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REMEMBER, THEN, THAT [SCIENTIFIC THOUGI{('Iﬂ\""'
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1S THE GUIDE OF ACTION; THAT THE TRUTH WI{@& IT
ARRIVES AT IS NOT THAT WHICH WE CAN mmf}ﬁﬁ; CON-
TEMPLATE WITHOUT ERROR, BUT THAT ngCH WE MAY
ACT UPON WITHOUT FEAR; AND YOU ‘GANNOT FAIL TO
SEE THAT SPIRINFIFIC a*gOUGHT’ I';S:’N'C)T AN ACCOMPANI-

MENT OB CONDITION OF HUMAN PROGRESS, BUT HUMAN

PROGEESS ITSELF, Q
\\ > W. K. Clifford
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PREFACE

THE copy of this book which I still possess was given o me
by my tutor when I was fifteen years of age. I read it dts
once, with passionate interest and with an intoxicating.de-
light in intellectual clarification. From that day amtil I
came to write this Preface, T had not locked at ‘the’book.
Now, having re-read it after fifty-seven years, many of them
devoted to the subjects of which it treats, I ‘find that it
deserved all the adolescent enthusiasm thélt I bestowed
upon it when I first read it.

Clifford possessed an arwmmmlg &% helongs only
to a very few great men-—not the pspudo-clarity of the popu-
larizer, which is achieved by ignoring or glozing over the
difficult points, but the clarify “that comes of profound and
orderly understanding, by wirtue of which principles become
luminous and deductions look easy. When I first became
acquainted with Clifferd, it was only three years since I had
been struggling wkbh Tuclid’s theory of proportion—sa sub-
ject that is now ¢onsidered too difficult for schoolboys, but
which in theseidays had to be mastered by every budding
mathematician. As Euclid treats it, it is a puzzling subjeet,
not only because it is inherently complicated, but because
Euchd\never mentions his perfectly adequate reasons for
net adopting the much simpler arithmetical procedure, of
“which the fallacies are not obvious until they are pointed.
out. Clifford, by telling just what is necessary and no more,
makes the whole theory as clear as noonday. In this and in
other matters the book Is invaluable to the schoolboy who,
though interested by mathematics, is bewildered, as any in-
telligent boy must be if he is badly taught.

The later parts of the book, as explained in the original
Preface, owe much to Karl Pearson, since Clifford’s early
death left the manuscript incomplete. Karl Pearson, how-
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ever, had so fully assimilated Clifford’s way of looking at
mathematics that he was able to carry out his task without
producing in the reader any awareness of disconfinuity. The
book can therefore be treated as a whole, and there is no
need to struggle to separate the editor’s work from the
author’s. )

The subject of which the book treats—the basis of purd.®
mathematies in logic and of applied mathematics in ohSer-
vation—is one in which iminense progress has been“thade
since the time when Clifford wrote, but knowledge.of subse-
quent work only increases the reader’s admirafion’for hig
prophetic insight. All that is said on the relationof geometry
to physics is entirely in harmony with Einstein’s theory of
gravitation, which was published thirt -si}r years after Chf-
ford’s death,TheRepk's. explicit rejection of “matter” and
“force” as concepts 1o be used in_physics is due to Karl
Pearson, but has some sanctionlin Clifford’s notes and is
clearly in line with his thinking! In this respect, as in many
others, Clifford was ahead of almost all the best thinking of
his time. RA

Non-Euclidean gegmétry, in which two straight lines may
enclose a space, ona triangle may have all its angles zero, was
a subject which, though inaugurated by Lobachevsky in
1829, had only just begun to attract the notice of most
geometers~ifi Clifford’s day. It was a very exciting and
rather d%t"urbing subject, since it showed that many things
whichys since Greek times, had been thought capable of
ragthematical proof could in fact be established only by
observation. Clifford himself did important work on this
suhject, and read a paper on a branch of it to the British
Association in 1873. But the work remained unpublished,
and might have been forgotten if it had not been mentioned
and carried further by a German mathematician, Felix
Klein, in his Lectures on Non-Euclidean Geometry, in which
he states that he felt himself more intimately related to
Clifford than to any other geometer. At the time when I
first read The Common Sense of the Ezact Sciences, I had only
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lately heard of the possibility of geometries that contra-
dicted Euclid; what T read in this book did much to diminish
the bewilderment that T had been feeling. In spite of all the
work that has since been done, hardly anything that Clif-
ford (or Karl Pearson) says on this subject could be bettered
by a writer at the present day. Some other geometrical
topies, however—for instance, the mention of quaternions,
for which apparently the editor is responsible—would\be
omitted by most modern authors, since they have notgproyed
a8 important or as illuminating as seemed likely at one time.

The opening chapter, on Number, although/it, says ad-
mirably what, in the seventies, seemed best; worth saying,
cannot tell the reader what is now knowi ‘4o be most im-
portant, since in this subject the grea{a,dvances made by
Dedekind, Cantor, and Frege, %ﬁ};w%gqgade imme-
diately following Clifford’s deathyHe was, moreover, a
geometer rather than an analyst,and it was in geometry
that his mathematical intuitiefitappeared at its best.

A taste for mathematicg,\like a taste for musie, can be
generated in some peoplé;sbut not in others. My brother, to
the end of his life, caild not distinguish God Save the King
from Rule, Bm'ta@e'd! TFor him even the most admirable
book on harmony\and counterpoint would have been totally
useless. In like manner there are people for whom such books
as Clifford’s’ sérve no purpose; they are the people who have
no wish~é understand the matters of which it treats. But I
thhglg%h“a't these could be much fewer than bad instruction
makes them seem. Pupils who have not an unusually strong

.«hﬁéﬁral bent towards mathematics are led to hate the subject
) i:)y two shortcomings on the part of their teachers. The
first is that mathematies is not exhibited as the basis of all
our seientific knowledge, both theoretical and practical: the
pupil is not convincingly shown that what we can under-
stand of the world, and what we can do with machines, we
ean understand and do in virtue of mathematics. The second
defect is that the difficulties are not approached gradually,
as they should be, and are not minimized by being con-
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nected with easily apprehended central principles, so that
the edifice of mathematics is made to look like a collection
of detached hovels rather than a single temple embodying
a unitary plan. It is especially in regard to this second de-
fect that Clifford’s book is valuable.

Clifford’s book may not only still be read with great profit
by young people interested in mathematics, but should also(
be studied with diligent admiration by all who are engaged
in trying to make difficult ideas intelligible. New ideas almost
always appear first in an unnecessarily complicated ;form,
and are therefore thought harder to master thad\they are
subsequently found to be. Plato thought thef Years from
twenty to thirty not too long for acquiring.aknowledge of
the mathematics that had been discoverpdun his day, most
of _whic\l:? in c!g%ruhtg{%px%pgirprom}mng .§1;udent achieves by
the age of thirteen, This acceleratiomydue to the labours of
many men who have done something of what Clifford did
in this book. As the total amount of human knowledge in-
creases and the journey ffom childish ignorance to the
frontier of discovery lengthens, it becomes more and more
important to hasten ihe" process and to make the journey
as easy as possible. In'each generation some of this work has
to be done afreshigince some old subjects turn out to be un-
important and\$ete new ones important. Plato and Euclid
thought the/@enstruction of the regular solids the most im-
portant preblem in geometry; nowadays this is a mere by~
path. The earliest extant treatise on arithmetic, that of
Ahmes the Egyptian, of about 1700 8.c., is largely concerned
to show how to exhibit fractions as sums of other fractions
having 1 for their numerators, a matter that has since become
totally without interest. The discarding of such useless
traditional problems is one part of what must be done if
instruction is to be sufficiently rapid.

The other thing that must be dong—and here Clifford 1s
suprenely excellent—is fo discover the point of view from
which a subject is most easily surveyed. A wood in which
the trees are planted in rows looks regular when viewed
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along a row from one end of it, but may appear completely
higgledy-piggledy when viewed on a slant. The same sort of
thing is true of a mathematical subject: if you approach it
from the wrong angle, each step will be difficult, you will
be entangled in thickets, and you will get no view of the
whole; but if you start at the right point and advance in the
right direction, the obstacles disappear and progress is easy.
Clifford’s survey of elementary Euclidean geometry, begin-
ning with the two axioms that things can be movediwithout
change of shape, and that the size of things can beéuncreased
or diminished by a change of scale without change of shape,
is just what is needed to make geometry easy'to a beginner
without undue sacrifice of logical rigoUr) And the same
merits remain when he comes, later, totreat of conie sections.

Clifford was much more, thany g.ﬁ'ﬁ%}]ﬁ afipign: he was a
philosopher, of considerable mefif in what concerned the
foundations of mathematical kiowledge. Moreover, he saw
all knowledge, even the most-abstract, as part of the general
life of mankind, and as eoticerned in the endeavour to make
human existence less petty, less superstitious, and less
miserable. He livedab a time when optimism was not so dif-
ficult as it has‘sinee become, and when hope for the future
seemed justiﬁec%ay the history of the previous two hundred
years. ItywWas possible, without any blind act of faith, to
believethat the human species would become progressively
more(Btimane, more tolerant, and more enlightened, with
thé eonsequence that war and disease and poverty, and the
.@ﬂ‘xer major evils of our existence, would continually di-

“\“minish. In this beneficent process rational knowledge was

to be the chief agent, and mathematics, as the most com-
pletely rational kind of knowledge, was to be in the van.
This faith was Clifford’s, and it was mine when I first read
his book; in turning over its pages again, the ghosts of old
hopes rise up to mock me. Over large parts of the earth’s
surface the most civilized individuals have suffered perse-
cution, there has been a deliberate lowering of the standard
of comfort, and in the course of combating these evils we
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have been compelled to destroy many ancient cities and re-
duce whole countries, many of thera friendly eountries, to the
verge of starvation.

In the world in which we find ourselves it is difficult to
believe in the influence of reason on human affairs, or in the
importance to roankind of theorctical knowledge. Praclical,
knowledge, yes, since it enables us to kill our enemies; bus,
it was not on this account that Clifford valued knowiedgs,
or that Klein, 4 German, went ouf of his way to prgisg}‘tﬁfn.
Difficult ag it is to maintain the beliefs that inspiredsilie best
men of the nineteenth century, there is, 1 still fHink, every
ground for regarding the old virtues of tolef‘a}me and cn-
lightenment as the basis for the hopes thgt, are possible, If
the men of that time were too optimisti¢/it is easy for us to
be too pessimistic, for had periods até ho more eternal than
good ondd tABHEN WhNS ey 1ast they may seem so. I hope
thai, in reading this book, re@dé'rs may imbibe something
of its author’s belief in the, pdgsibiﬁty of excellent things,
and that this may help theni‘to acquire some of the sirength
that is needed to fight against the evils of the age in which
we are compelled to\lﬁfe’.

Cambridge, 1945 o\ Bertrand Russell
\ X
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INTRODUCTION

I

THROUGHOUT the nineteenth century men travelled the
roads of science with enormous strides. So numerous'sere
the travellers, so varied and far their journeys, thabit is
bewildering to attempt to recall the milestones of théirprog-
ress. In physics: electro-magnetic theory ’af;‘d\ " thermo-
dynamics; in astronomy: the discovery of new planets, the
cataloguing of thousands of stars, advanqesﬁﬁ every part of
theoretical astronomy; in chemistry: speetrum analysis, the
periodic table, the developmedirofigrganicg ehemistry; in
biology: theories of evolution and\inheritance; in mathe-
maties: group theory, new fields(of 2lgebra and analysis, non-
Euclidean geometry, foundation studies, a mathematics of
infinity—these are amongtthe names which the milestones
bear. N\

If we confine our attention to mathematics two facts stand
out. The first i3 thsafb\ at no time in the history of mathematics
did its contrag:ﬁbﬁ)ry aspects, its diversity and its unity, be-
come moreaodiceable than in the nineteenth century. While
new branthes of mathematics emerged, the relationship and
interd&p&dence of its existing parts were strengthened,
gi\{i&ﬁ“ to algebra, analysis, and geometry a freedom and
géhera.lity hitherto inconceivable. The mathematics of the

+

Chineteenth century thus brought “scattered but cognate

lines of reasoning” together, and, as Merz says,’ “made
them mutually fertile and suggestive.”

From the other sciences, which in their forward surge
besought the aid of its analytical and descriptive powers,
mathematics in the nineteenth century received a powerful
impulse; this, the second noteworthy point. The advances

t John Theodore Merz: Hislory of FKuropran Thought in the Nineleenlh
Century. Fourth edition, Edinburgh and London, 1923.
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were so swift and revolutionary that if the mathematics
of the nineteenth century differs markedly from that of the
eighteenth, if it seems strikingly modern and of our time, the
explanation is not far to seek: for the physies, chemistry,
biology, and astronomy of the nineteenth century were also
radically different, also modern and of cur time. Nor are
the great movements of our own century belittled by ac-
knowledging their birth in the last.

This stimoulus and the search for new links between! thc
several branches of mathematics are reflected in the pane,rf:.
of the foremost mathematicians of the century.“Gauss,
Riemann, Fourier, Cauchy, Poisson, Hamiltox, ‘and many
more. Even those who engaged only in pure Fesearch and
like the eminent Jacobi took the view thafsthe principal aim
of mathematics is not “‘public utility?’¢but, rather, *the
honourvefvtAbr iR YspiFit)” # despitevtheir esoteric prefer-
ence, contributed immeasurably to the solution of problems
in physics, astronomy, and cklf-imstry The “public utilify”
of the beautiful structurc iy tunction theory erected by
Niels Abel may not haveseeen at once apparent; nor was it
early recogmzed in theAiny mathematical legacy of Tivariste
Galois, killed in a d\(el “at twenty-one. The work of Steiner
and von Staudt im\synthetic geometry, of Riemann, Loba-
chevsky, and »Bolyai in non-Iuclidean geometry, at first
also seemed gemote from the experimental sciences.

But thelchsence of pure mathematical speculation lies in
the comh'uctlon of new concepts which, when translated
into- \symbols lend themselves to comple)\ operations;
throvgh the operations the coneepts are extended in meaning,
their relations developed beyond the boundaries originally
conceived, and again fresh areas of thought are opened.
‘‘All applications of mathematics consist in extending the
empirical knowledge which we possess of a limited number
or region of accessible phenomena into the region of the

¥ ¥, . and from this point of view & question about numbers is as impor-
tant as a question about the system of the world,” Quoted by Florian Cajori:
History of Mathematics, p. 413. Becond edition, New York, 1919,
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unknown and inaccessible.”” 3 And in this region pure and
applied mathematics meet and join forces.

Possessed of mathematical and speculative geniug, im-
pelled by a passion for search and inquiry, responsive to
the intellectual and social forces that shaped nineteenth-
century thought, the author of The Common Sense of the
Ezxact Sciences earned a place among the century’s distin-
guished scientists. His best mathematical work lay in geom-
etry, but beyond that he was a citizen of science, ceaselessly
endeavouring to strengthen its foundations and orgamic unity
and, by preaching the widest applicability of it§ Methods, to
promote the rational and confound the irrational. The gauge
and bent of his views are perhaps best-shown in a single
sentence of an address made at Can{mdge when he was
{wenty-one: “Thought,” Chﬁm;dimdh bis-perenless except
fo make Somethlng outside of itsel.the thought which con-
quers the world is not contemplatlve but active.” ¢ In a
tragically short life of thlrty-ﬁve years, in a working life of
fifteen, he enlarged smenmﬁc knowledge by a series of con-
mbutlom as beforehanded as they were fertile, as valuable
as they were lucid. T6 the brilliant English astronomer Roger
Cotes, Newton pait tribute with the comment: “If he had
lived we might have known something.” For Clifford, too,
this is a fitting epitaph.

N II

Wﬁiém Kingdon Clifford was born at Exeter, May 4,
1845, ITis father, who served as justice of the peace, was
~Swell known in town affairs. His mother died when he was
:young. From her he inherited his restless energy, his genius,
perhaps, and, more unfortunately, the predisposition to the

disease that so early ended his life.

3 Merz, op. cit.
4 Lectures nnd Essays by the late Willlam Kingdon Clifford, F.R.8. Edited

by Leslie Stephen and Frederick Pollock. Londen, 1876, ['This is referred to
bereinafter as I & E; where the quote is from Polleck’s Introducetion, it is
given ss L & E (P); where the quote is from Clifford’s Letters, it is given 28

L & E (Clifford’s letters).}
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We know nothing of Clifford’s childhood. The few stilted
anecdotes that survive are of the George Washington cherry-
tree school. They tell something of the tellers but nothing of
the child. After his early education at Exeter, Clifford at
fifieen was sent to King’s College in Lovndon. There he did
well in classical and lterary studies as well gs in mathe-
matics. [laving won a minor scholarship, he left King's ind
October 1863 to enter Trinity College, Cambridge. Ehe
same year that Chfford entered the university he produoed i
number of original mathematical papers, and his, pnvate
tutor, Percival Frost, recognizing his gifts, foreg;a,w that he
would win a bigh place among contemporary ge}éhtist-s.

His reputation in his student years stemmjed not from his
mathematical powers alone. In a rigidly seenventional age
he was marked by eccentricities of hakit,\dress, and opinion.
His reh@iﬁ'ﬁs%%@ VAR B8R of an ardent ngh Churchman,
and this was not usual in Ca.mbr;’dge at the time, Later in
life, influenced by the writings® of Darwin and Spencer,
Clifford turned violently against organized religion, cspe-
cially “‘ priesteraft,” but a#{fhis time, having studied Aquinas,
he was “fond of sup ortmg Catholic doctrines by ingenious
scientific analogies,’ “What attracted others were “the
varied and flexible\play of his thought, the boundless range
of his human ghferests and sympathies.” ¢ Widely read in
philosophy, c@a}ical literature, and modern history, he chal-
lenged hl\frlends by the “daring versatility of his talk.”’ 7
While dg nften took the unpopular view, even in scientific
dlﬁpu’tes he was not eristic in spirit: in debate, as in all ac-
tivifies, he sought the truth. His sincerity and freshness of
viewpoint went so naturally together that few of his op-
ponents In argument could take umbrage at his sometimes
unlimited enthugiasm; he could give no lasting offence,
quite simply, because he meant none.

Frederick Pollock, the eminent jurist, was a student at

3 Leslic Btephen: article on Clifford, Dictionary of National Biography.

SL & E (P
T Thid.
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Trinity with Clifford. In a tender and reverent biographical
note introducing the edition of Lectures and Essays that ap-
peared seven years after Clifford’s death, Pollock described
an incident, at the outset of their friendship, revealing the
elarity of Clifford’s thought and his talent for imparting
knowledge to others.

““In the analytical treatment of statics there occurs a proposi-
tion called Ivory’s Theorem concerning the attractiongsof an
ellipsoid. The textbooks demonstrate it by a formidable. dpparatus
of co-ordinates and integrals, such as we were wont to call a grind.
On a certain day in the Long Vacation of 1866, whi¢h Clifford and
{ spent at Cambridge, I was not a little exercised®y the theorem
in question, as I suppose many students hiwé been before and
since. The chain of symbolic proof seems@ artificial and dead; it
compelled the understanding but faiieéi{b\s%ﬁ&igf{f the reason. After
reading and learning the proposttionione sail 1atled o See what it
was all about. Being out for a wdlk Wwith Clifford, I opened my
perplexities to him; I think I cab recall the very spot. What he
said T do not remember in detail, which is not surprising, as I have
had no oceasion to remember anything about Ivory’s Theorem
these twelve years. Bugl know that as he spoke he appeared not
te be working out aguestion, but simply telling what he saw.
Without any disgram’ of symbolic aid he described the geometrical
conditions on avhich the soluticn depended, and they scemed to
stand out yighly in space. There were no longer consequences to
be deduced, but real and evident facts which only required to be
scen. And-this one instance, fixed in my memory as the first that
cam\eib'd my krowledge, represents both Clifford’s theory of what
teaeling ought to be and his constant way of carrying it out in his

. (Qiscourses and conversation on mathematical and scientific sub-

Jjects. So whole and complete was the vision that for the time the

only strange thing was that anybody should fail to see it in the
same way.®

Clifford was a member of the well-known club called the
Apostles. At its meetings, as in his rooms, he d_re?v a.rpund
him by his brilliance and charm a group of dlstmg:mshed
contemporaries, who in their discussions—to use his own

4 Ihid.
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expression—‘solved the universe with delight’’* and par-
took generally of the pleasures of good talk and friendly
dialectic.

He belonged also to the Grote Club at Cambridge, whick
included among its members the famous economist Alired
Marshall, Henry Sidgwick, the philosopher, and John Venxn,
the logician. Marshall was a great friend of Clifford’s and
admired him immensely, although he felt that ““He was {dg
fond of astonishing people.” Deseribing Clifford’s partitipa-
tion in the meetings of the club, Marshall wrote: .

“For a year or two {(1869) Sidgwick, Mozley, Chf&urd Moniton
and myself were the active membrs; and we all{attended regu-
larly. Clifford and Moulton had at that tinieMread but Iittle
philosophy; s0 they kept quiet for the first halﬁmur of the discus-
sion, and listened eagerly to what otherg arﬁ especially Sidgwick,

said. ThenwtheyebibrEigireolibues Ioose, and the pace was tre-
mendous.”” ¥ o

Whatever Chifford tackled Was carried through with a
drive that reflected not merely his eagerness for mastery but
his joy in living thmgs out to the full. He studied French,
German, and Spanish,Because he thought them necessary
for his work; Arabte, Greek, and Sanskrit because they were
difficult and betause difficult, a challenge; hieroglyphics
because they)were a riddle." His justification for learning
the Morsecode and shorthand was that he was interested in
all metho‘ds of conveying thought, but this was not the only
msta.(xce where the little boy in him had to be rationalized.
His athletic achievements seemed to please him even more
then the winning of literary, scientifie, and oratorical prizes.
He topped his athletic career hanging by his toes from the
cross-bar on the weathercock of a church steeple, thereby
earning the accolade in the yearbook of his class as “one of
the most daring athletes of the University.” 12

' L & E (Clhifiord’s letters).

1* Essay on Alfred Marshail by John Maynard Keynes: Esszays in Biography.
TLondon, 1933,

u71 & E P). 2 Thid,
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The catholicity of Clifford’s interests and his independence
of mind guided his reading even in mathematics. He would not
permit himself to be strait-jacketed into the training routine
for the competitive examinations known as the tripos. In
Hngland more than elsewhere the honours a student wins,
or fails to win, at the university tag him for the rest of his
life, especially if he follows an academic eareer. The uu-
fortunate competitive aspect of the fripos has long, shuce
been abandoned, but in Clifford’s day to finish on top;to be
“first wrangler,” was coin for the future. To prepdre for the
sompetition one placed oneself in the hands(of, a special
goach for a long and unbelievably arduoug grind. Months
of practice in intricate manipulations were) intended to in-
crease the rate at which one could solve,and more especially
write out, the solutions of thg nre e%]ﬁblf_a’ll‘)}; log%nand stu-
dents alike knew that Clifford gould be first” wrangler if he
trained for this intellectual gymmastic. Clifford, too modest
4o know and caring less, with almost no preparation fin-
ished second wrangler. A that level he was in good com-
pany: De Morgan, in his time, was fourth; Whewell, Syl-
vesier, Kelvin, and the incomparable Clerk Maxwell were,
in their day, a.ll\g'éctind.

A I
A

T 1R68 Clifford was elected to a fellowship at Trinity.
While his best mathematical papers were still fo come, his
dutput, not voluminous, was steady in quantity—three or
four papers a year—in quality, elegant and suggestive. The
year of his election also marked his first important lecture,
or what was referred to as the ““discourse for an enlightened
auditory.” Great importance attached to popular or ser.ni-
popular lectures in the nineteenth century; every scientist,
philosopher, and man of letters took to the lecture platform—
Huxley, Kelvin, Mach, Helmboltz, Maxwell, Faraday,

12 A, Macpherson: T'en Brifish Mathemabicians of the Nineleenth Century,
essay on Clifford. New York, 1916.
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Davy, to mention at random a few of the scientists—to popu-
larize learning and, often, to impart the first notice of new
ideas and discoveries. In this medium for disseminating in-
formadtion, frequently preferred to writing and cultivated as
a fine ar{, Clifford was a master. He spoke with great clarity
and enthusiasm and by his evident interest in his audience,
at once captured their attention. He rarely wrote out his
address in advance, and the ease thus achieved, combitiad
with his powers of illustration and his ability to tufi ‘the
abstract into the concrete, gave his lectures bothhicidity
and charm, which even the lapse of time and ‘gransfer to
print do not diminish. A few of the lecturg&\will be con-
sidered further on, but there is a brief passhge in his first:
“Conditions of Mental Development ”',%’elivered at the
Royal Institution, March 6, 1868, Whlcﬁi seems appropriate
here., I¥ %@W&”éa@ésoéﬁﬁion of the ‘‘twin-characteristics
of a man of genius”; it fits tha lecturer singularly well:
““He is clearly distinet from the people that surround him,
that is how you recognize hitn; but then this very distinetion
must be such as to bind Bim still closer to them, extend and
intensify his symp tkgeé, make him want their wants, re-
joice over their joyz,\be cast down by their sorrows.” 1

Clifford sper{t\ﬁvér two years at Cambridge. His mathe-
matical powgss, directed mostly to geometry, steadily de-
veloped. Higtwork ranged from the more abstruse—On
Syzygetie.Relations among the Powers of Linear Quantics,”
““On the Umbilici of Anallagmatic Surfaces,” “On the Space
Théoty of Matter”’—to the simpler “Lectures on Geom-
etey,” “given to a Class of Ladies at S, Kensington.” He eon-
cerned himself increasingly with the work of Lobachevsky,
and more particularly Riemann, in non-Euclidean geometry.
H. J. Stephen Smith, » noted British geometer of the nine-
teenth century, who held the Savilian chair at Oxford during
the latter part of Clifford’s life, points out that while Clifford’s
predilection for geometry lay deep:

YL&E
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“to this his favourite science he attributed the widest imaginable
scope, and at times regarded it as co-extensive with the whole
domain of nature. He was a metaphysician (though he would only
have accepted the name subject to an Interpretation) as well as a
mathematician; and geometry was to him an important factor in
the problem of ‘solving the universe.! Thus he was a geometer of
& type peculiarly his own; and his dealings with the science were
characterized by an amount of scepticism and an amount of \faith
which one would hardly expect to find combined in a miafhema-
tician,” 1 O

Indeed, throughout his work the most arrés;ffng facet of
Clifford’s originality is the manner in whi¢h he leavened
mathematical thought with the fermerthef philosophy.

AY;
A
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In 1870 Clifford joined th,e{“Engljsh eclipse expedition but
the ship Psyche, carrying the party, was wrecked off Catania.
Fortunately all hands wete saved and even the instruments
were rescued. Cliffgrd ook the mishap with his customary
good humour. In{ writing to Lady Pollock from Florence
shortly after j;%\shjpwreck—only a fragment of the letter
Is preserveds=He says:

NS

“No inkpmo paper, no nothing. . . . After that [the shipwreck]
somehow 1o Catania, some in boats and some in holy carts of the
coufitry, all over saints in bright shaws—well, if ever a shipwreck
wes nicely and comfortably managed, without any fuss—but I

(gan’t speak calmly about it because I am so angry at the idiots
’ who failed to save the dear ship—alas! my heart’s in the waters

close by Polyphemus’s eye, which we put out. At Catania, orange
groves and tclescopes; thence to camp at Augusta; Jlonadab, son
of Rechab, great fun, natives kept off camp by a white (?01‘d ; 200
always to see us wash in the morning—a performance which never
lost its charm—only five seconds totality free from eloud, found
polarisation on moon’s disc, agree with Pickering, other people

5 Mathematical Papers by William Kingdon C]if.’t'ord. Edited by Robert
Tucker (from the Introduction by H. J. Stephen Smith). London, 1882.
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sucecessful. . . . At Rome 24 days, pictures, statues, Coliseum by
moonlight. Both of us sneered awfully next morning, This morning
arrive in Florence—Pitti palace—spent all my money, and shall
get stranded between Cologne and Ostend unless I can live on one
egg every other day, and thereout suck no small advantage, —~be
better off in Paris. . .."

N\
So in the same gay, vividly descriptive vein were Mo, of
his letters of travel to the last months of his life, when aven
to hold the pen meant a fearful effort.

Appointed professor of applied mathema,tlcs a‘t Umveralfv
College, London, Clifford left Cambridge_id\ ¥871. Among
those recommending him for this post, which be oce upied
until his death, was Clerk Maxwell, whoiad first learned to
value Clifford’s talents at the smail,f\ﬁaore or less informal
meetinggvof bthdiTHRdYE-Mathethatical Society, to which
both men belonged. Clifford could be shy as well as exuber-
ant or outspoken; and in thg eampany of Sylvester, Maxwell,
Smith, and other distinglished mathematicians, members
of the society, he rarel¥ rose to speak of his own accord.
But{ the cogency Of;i]—l\ls remarks when he was called upon
was such as to evoke high praise from Maxwell, not given, ag
Pollock phrasesib; to “unmeasured expression of his mind.”*
‘Maxwell’s Jottér urging the selection of Clifford stressed
that his résearches did not tend to ““the elaboration of ab-
struse'theorems by ingenious calculation, but to the elucida~
tion\of scientific ideas by the concentration upon them of

N c]aar and steady thought.”
) "Within less than two years after his appointment Clifford
delivered several of his best-known lectures and published,
among numerous writings, a celebrated paper on biquater-
nions, This last I pass for the comment of more competent
judges with the bare remark that it is a paper on the gen-
eralized conceptions of space, a subject to which Clifford
made major contributions; the paper stands high in the lit-
erature of mathematics. The lectures in which Clifford sets

% L & E (Clifford’s letters}. UL &E(P). 2 {hid,
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forth his philosophy of science, and more particularly his
analysis of geometry, attract further consideration, being
of wider and less technical interest and epitomizing Clifford’s
singular powers.

v

Before the members of the British Association at Brighton,<
in 1872, Clifford gave his address: “On the Aims and Insiru-
ments of Scientific Thought.” * He offers at the outsetan
admirable definition of scientific thought: A

“In the first place, then, what is meant by scien!;ific thotght?
You may have heard some of it expressed in the\Warious Sections
this morning, You have probably also heard expressed in the same
places a great deal of unscientific thought;‘n’&twithstaudjng that
it was about mechanical energy, ot bpllytraeibony) or about
eocene deposits, or about malacopterygily For scientific thought
does not mean thought about scientifio subjects with long names.
There are no scientific subjectseThe subject of science is the
human upiverse; that is to sayyeverything that is, or has been, or
may be related to man.” - .

From examples of x's}c?l‘entiﬁc thought in astronomy, en-
gineering, physies, “hiology, Clifford then shows that each
step forward in.geiénce,

“from past expé;ience to new circumstances, must be made in ac-
cordance with/an observed uniformity in the order of events. . . .
By thef&é"bf this instrument [of uniformity, scientifie thought]
gives us information transcending our experience, it enables us to
infei'\‘i:hings that we have not seen from things that we have seen;
andl the evidence for the truth of that information depends on
our supposing that the uniformity holds good beyond our experi-

1

£

ENnce.
Is this uniformity of nature exact—as wholly mechanical
interpretation of nature would say it must be?

“] guppose there is hardly a physical student (unless he has
specially considered the matter) who would not at once assent to

L &BE.
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the statement . .. that if we knew all about 1§, Nature would
be found universally subject to exact numerical laws. [But there
i8 & difference between the theoreiical and the praciical meaning of
‘exact.”] When a grocer weighs you out a certain quantity of
sugar very carefully, and says it is exactly a pound, he means that
the difference between the mass of the sugar and that of the pound
weight he employs is too small fo be detected by his scales. I,
chemist had made a special investigation, wishing to be as ace urdte
as he could, and told you this was exactly a pound of buﬁa,r he
would mean that the mass of the sugar differed from fhat of &
certain standard piece of platinum by a quantity tog small to be
detected by his means of weighing, which are a thqusandfold more
accurate than the grocer’s. But what would a mdthematician reean,
if he made the same statement? He would anean this. Suppose
the mass of the standard pound to be repres&ted by a length, say
a foot, measured on a certain line; so tha}b half a pound would be
represeitté B WY NS %nd so o YWnd let the difference be-
tween the mass of the sugar and that of the standard pound be
drawn upon the same line to thelsame scale. Then, if that differ-
ence were magnified an infinite number of times, it would still be
invisible.* This is the theoretical meaning of exactness; the prac-
tical meaning is only Ver} ¢lose approximation; how close, depends
upon the circumstafées” The knowledge then of an exact law in
the theoretical senge would be equivalent to an infinite observa-
tion. I do not, g8y that such knowledge is impossible to man; but
{ do say t}}a\t“it would be absolutely different in kind from any
knowledgethat we possess at present.

“I ghail be told, no doubt, that we do possess a great deal of
Lnowledge of this kmd in the form of geometry and mechanies;

.and‘ that it is just the cxample of these sciences that has led men

to Took for exactness in other quarters. If this had been said to me
in the last century, I should not have known what to reply. But
it happens that at about the beginning of the present ecentury the
foundations of geometry were criticized independently by two
mathematicians, Lobatchewsky { Lobachevsky] and the immortal
Gauss; whose results have been extended and generalized more re-
cently by Riemann and Helmboliz. And the conelusions to which

* Here one cught to eliminate the word “infinite,”” quite meaningless in this

connection, and interpret the passage: “if that difference were magnified as
often as you please—without limit, it would still be invisible.” — J.R.N.
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these investigations lead us is that, although the assumptions
which were very properly made by the ancient geometers are prae-
{icaily exact—that is to say, more exact than experiment can be—
for such finite things as we have to deal with, and such portions of
apace as we can reach; yet the truth of them for very much larger
things, or very much smaller things, or parts of space which are
ab present beyond our reach, is a matter to be decided by experis
raent, when its powers are considerably increased. I want to make
az clear as possible the real state of this question at present, heéaise
it is often supposed to be a guestion of words or metaphysies,
whereas it is a very distinct and simple question of fa:cﬁ;,”‘

Clifford thus firmly allied himself with Riéuiann, one of
the greatest mathematicians of the century, in the view
that geometry as applied to the world, of” experience is an
experimental science and, as physitisigindey svpuwld say, a
proper part of physics. Geometry, acpording to this analysis,
remains an exact science but ceases to be a universal one,
and between these two, though the difference in practical
caleulation is inconceivahlyismall, ““there is fixed an enor-
mous gulf.” For a law i§'only true universally if it is true of
all cases whatever; “4md this is what we do not know of any
law at all.”’ N\

Cliffiord forméd this conclusion when much of accredited
mathematicsgrd philosophy was against it. His opinions
were a chéllenge to the belief that Euclidean geometry was
the petfeet description, for all times, of all parts of actual
spacessUpon the success of this challenge depended the
,evol'uﬁion of the new concepts of space, time, energy, and

{miatter underlying modern physics. Clifford’s views, from
the standpoint of philosophy, also contested the doctrine,
advanced in Kant’s transcendental ssthetic, that the long-
accepted notions of space were immutable because they were
a necessary and inherent attribute of our mode of perceptlon
or, more simply, were determined by the nature of our minds.
To a fuller examination of this problem we shall return
when considering Clifford’s lectures on the philosophy of

the pure sciences.
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I cannot leave this lecture without quoting another por-
tion in which Clifford, with his gift for making involved
things simple, defines the notion of cause:

“In asking what we mean by this [cause ], we have entered upon
an appalling task, The word represented by ‘cause’ has sixty-
four meanings in Plato and forty-eight in Aristotle. These wers
reen who liked to know as near as might be what they meant; ke
how many meanings it has had in the writings of the my na\h; ot
people who bave not tried to know what they meant by 1t\w1}l H
hope, never becounted. . . . Ishall evade the difficulty [of attempt~
ing still another dehmtlon of my own] by telling you M1 Grote’s
opinion. You come to a scarecrow and ask, whatdsthe cause of
this? You find that a man made it to frighten the birds. You go
away and say to yourself, ‘Everything resembles this scarecrow.
Everything has a purpose. * And from ths &ay the word ‘eause’
means {6¥ '395' lx%lfla%rﬁs%o%le meant by nal cause.” Or you go
into a hairdresser’s shop, and wonder what turns the wheel to which
the rotary brush is attached. On duyestigating other parts of the
premises, you find a man '.vor]gdni}j away at 2 handle. Then you go
away and say, ‘Everything s.like that wheel, If I investigated
enough, T should always find a man at & handle.” And the man at
the handle, or whatever,)¢orresponds to him, is from henceforth
known to you as ‘calise.’”

“ And so generdlly. When you have made out any sequence of
events to yourehtire satisfaction, so that you know all about it,
the laws involved being so familiar that you seem to see how the
beginning{must have been followed by the end, then you apply
that ag @ simile to all other events whatever, and your idea of
caps\é s determined by it. Only when a case arises, as it always

/

Jnust, to which the simile will not apply, you do not confess to

yourself that it was only a simile and need not apply to everything,
but vou say, ‘The cause of that event is 2 mystery which must

~ remain forever unknown to me.” On equally just grounds the nerv-

ous system of my umbrelia is 2 mystery which must remain for-
ever unknown to me. My umbrella has no nervous system; and the
event to which your simile did not apply has no cause in your sense
of the word. When we say then fhat every effect has a causc, we
mean thai every event is connected with something in a way that
might make somebody call that the cause of it. But 1, at least,
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Lave never yet seen any single meaning of the word that could be
fnirly applied to the whole order of nature,” ™%

VI

In his book on The Social Function of Science J. D. Bernal
points out that in most countries science, since the violeng ™
days of the seventeenth century when a basic philosephy
of the sciences was hammered out, has been able *“ to-get*on
perfectly well without philosophy, especially in \Ergland
where philosophy, like religion in polite circles,,was hardly

2¢ The lecture is concluded with these words: "By scieﬁt&ﬁc thought we
mean the application of past experience to new cireumstinces by means of
an observed order of events. By saying that this qr{igr of events i3 exact we
mean that it is exaet enough to corre i Tﬁy we do not mean
that it is theoretically ar absolutely ﬁme gg oibﬁﬁ_ The proc-
ess of inference we found to be in itself an dsdufption of uniformity, and we
found that, as the known exactness of ghe. uniformity became greater, the
gtringency of the inferences increased. \By ‘saying that the order of events is
reasonable we do not mean that everwthing has & purpose, or that everything
can be explained, or that everything*has a cause; for neither of these is true.
But, we mean that to every reaéonable question there is an intelligibie answer,
which either we or posterityJuay know by the ezercise of scientific thought.”’

7 Implieit in Cliffor ’s(éhi]osuphy of science is a reappraisal of the function
of science: What is the immediate aim of experiment and research? What are
the criteria for a ,s'u:ccessfu] hypothesis? Where is the boundary between
philosophy andsciédee? What is the proper task of each? The famous intro-
duetory sentense/to Kirchhoff's lecture “*Mechanics™ embodies the trend of
Clifford's thedght: *Mechanies is the science of motion; we define her task: to
describ&}émi)lcteiy in the simplest manner the motions that take place in
bature? }nd g6 for every science, its function being to deseribe, not to explain.
To.the Bxtent this is true—and it is well to recognize that scientific deseription,

oﬁl\ée, any other, implies selecting data, distinguishing between the relevant
Nand irrelevant, and so cannot he free of explanation in the form of precon-
ceptions, tentative hypotheses and criteria—science partially frees itself of
vexatious and bewildering problems such as choosing between the sixty-four
“ pauses” of Plato and the forty-eight of Aristotle. ‘There remains to it the more
divect activity of inquiry and experiment, adopting or discarding hypotheses
without too much regard for consequences to philosophical systems, or, for
that matter, common sense. Philosophy may come alter te repair the damage;
common sense must lick ity wounds and recuperate as best it can. Science, as
Eddington remarks, must not be built like a house: that comes tumbling down
when someone takes away & cornerstone; “it should be like an engine with

movable parts.”
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ever mentioned in connection with science.” 2 The spirit of
bold philosophical eriticism directed to the foundation and
borderland problems of science, while burgeoning in the
great German universities of the nineteenth century, was
notably withering in the academic centres of England, There
the metaphysical interest had been all but banished from
science.

But the prevailing mores of academicians lzid little(res
straint on Clifford. He was among the first in England ¢g'call
attention to the philosophical ideas related to thefounda-
tions of geometry, bringing them to public noticéan the lec-
ture just considered.® The next year he trapstated from the
German the epoch-making paper of Riemhann: “On the
Hypotheses Which Lie at the Bases of Qf}eomet-ry.” This
work of vast prophecy in mathematies.and physies further
. . w_cilbrau 1]:1 alé%r.@ﬁ:[_lfll AN . h
inspired %d impelie ord to_ W@ studies in geometry.
Some mathematicians found geefnetry dull under the sign
of Euclid because they felt thi€mselves imprisoned in the
axioms. If geometry was this’perfect logical discipline, its
propositions deduced frgql & handful of universal postulates
and axioms by rigorous rules of inference, were not all con-
sequences implicit in‘the axioms? Were not the propositions
already foretold, mierely awaiting exfoliation or a mechanical

- NS . -
recital pursum{t“ $6 formula? How could this exercise challenge
the imagination of the ereative scientist? 2 To answer these

2. D,.\B‘erﬂal'. The Social Funclion of Science (New York, 193%), p. 230

# In hisphilosophy of seience Clifford held views essentially similar to those
of Clérk Maxwell, Karl Pearson, Ernst Mach, and Hermann Helmholtz. In
sbmeipoints there was also an affinity to the opinions of that curicus nineteenth-
century prophet of “advanced” wviews in physics, Johapn Bernbard Stallo.
Stalio, of German birth, migrated to the United States, settled in Cincinnati
in 1839, and became a teacher, lawyer, judge, and finally United States Am-
bassador to Rome. In this busy and worldly existence he maintained a deep
interest, of early origin, in philosophy and the foundations of science, and his
book The Concepts and Theories of Modern Physics, slthough in almost violent
opposition to the possibility of new-fangled geometries, waz filled with trench-
ant and fertile ideas.

# “Thus the unknown, or at least the unforeseen, seems to be excluded from

geometry, hecause whatever may be found out hereafter must be latent in
what is aiready known. But in the view put forward by Riemann and adopted
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questions and better to appreciate the problems on which
Clifford focused his speculations it is perhaps desirable to
consider for a moment the distinction between geometry as
pure and as applied mathematics.?

Geometry considered as a pure science of ideal space is an
exercise in logic comparable to a game played with formal
rules. As in any game, there are pieces or counters (elements:
lines, points, ete.), their properties fixed by definitiod \
(postulates), their operations prescribed by rules (logical
inference)., There is no peint in asking what the gare
means; 1t is essential only that it be consistent and played
according to the rules. If the game points sore nioral or
there is discernible in its patterns some similarity to the pat-
terns of physics, politics, or psychoanalysishthe coincidence
is interesting, but not necessagj%mpggﬁ@ﬁrbﬂ:};gmure logic
of games has little to do with the,érratic wanderings of
nature. And the propositions of pure\géometry have nothing
to do with the space in the YalesBowl or around the planet
Neptune, with geometric figures on a blackboard, with the
path of projectiles or the orhits of electrons.

Geometry considered{as applied mathematics is quite
another case. The postulates and elements based upon ex-
perience purport to'describe the space around us and the ex-
tensional propertigs of matter. Pure geometry can no.more
be wrong thainthe game of dominoes; like dominoes, also, it
cannot be rislit. Geometry as applied mathematies, on the

by Cliﬂ’f,}r.d}the essential properties of space have to be regarded as things still
unk];m}i(ﬁ, which we may one day hope to find out by closer observation end
mafe batient reflection, and not as axioms to be aceepted on the authority of
'uni\v;a:rsal expericnee, or of the inner consciousness.” {Mathematical Papers by
William Kingdon Clifford, edited by Robert Tucker; from the Introduction
by H. J. 8tephen Smith.}

% The basic dichotomy in mathematics is well described in an address of
the eminent British mathematician George Cayley to the British Association
jn 1883: “Mathematics connect themselves on the one side with common life
and the physical sciences; on the other side with philosophy in regard to cur
notions of space and time, and in the questions which have arisen as to the
universality and necessity of the truths of mathematies and the foundation of

our knowledge of them. .. ."
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other hand, can be right or wrong in describing measurable
relations. The postulates and propositions of geometry, con-
sidered as having physical validity, hike the laws of physies
or ecology represent an organized body of hypotheszes, of
tentative and transient judgments subject to medification
or abandonment as fresh data may require, so as to_yild
propositions that more nearly conform to observation.”™

Tor two thousand years Kuclidean geometry passgd as
pure and applied geometry. It was judged botly Anodet of
humsan reasoning beyond the contamination of egrthly phe-
nomena and a perfect science of nature deseriliing the prop-
erties of space with theoretical exactitdde. With Fueclid’s
gystem elevated to an immobile, transeendental heaven, it
wag thought, not merely that sp{itial relations within a
ligpited Fange arg Shus, and so, a8 Buclid said, but thatb they
must be thus and so, everywher# and for cver.

» By focusing attention upan\tWo concepts of space, physical and mathe-
matical, the distinetion betwesm applied and pure mathematies revesls itself
as foliows: Certain ad hoctednventions with regard to physieal objects and
physical operations are/granted, for reasons of convenience, a geperality he-
yond any pa.rticulm;;m;"of objects or operations. ' They then become, 25 we
say, properties of Spacé. That is what is meant by physical space, wihich we may
define, in briefyasdhe abstract construct possessing those properties of rigid
bodies that ahe“independent of their material content. Physical space 1s thab
on which &itst the whole of physica is based and it is, of course, the space of
every%jfﬂlﬁaim.” (Lindsay and Margenau: Foundations of Physics. New York,
1936°N

&), . On the other hand the spaces or manifolds of pure mathematics are

¢ eonstructed without any reference to physical operations, such as measire

o’

“fnent. They possess only those properties expressed in the postulates and axioma
of the particular geometry in question, as well as those properties deducible
from them,

14, may well be that the postulates are themselves suggested, in part or in
whole, by the physical space of our experience, but they are to be regarded as
full-grown and independent. ¥ experiments were to show that seme, or all, of
our ideas shout physical space are wrong (as the theory of relativity has in fact
done) we would have to rewrite our texts on physies, but not our geometries.”
(Kasner and Newman: Mathematics and the Imagination. New York, 1940.)

For a general discussion of this subject see Enriques: Historic Development
of Logic {New York, 1929); Cohen and Nagel: Intreductior to Logic and Scien-

tific Method (New York, 1934); Russell: The Analysis of Mater (New York,
1927).
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Now, this enthronement was unfortunate in two respects.
First, as a description of actual space Euclidean geometry
could not pretend to universality : its postulates and theorems
having been tested only in a most limited range might not
be valid outside that range—in the domain of the very small
or of the very large. Second, by furning Euclidean postulates
into commandments, the freedom of mathematical inquirg™
was more effectively throttled than by ecclesiastical han.
For there appeared to be no possibility of constructing tew
geometries based upon non-Euclidean postulates;” such
postulates being, clearly, ‘‘contrary to nature,® Any dis-
cussion of space not known to the senses was thus forbidden.

The revolt came in the nineteenth centimyy the explosive
force being the non-Euclidean geometr@;of Lobachevsky,
Bolyai, and Riemann; the powder traingihe slispuies about the
nature of the parallel postulate whisliGauss had also studied.
The first doubtshad been stirred not'by experimental evidence
but by logical considerations. Inclined to be a Jacobin in re-
evaluating the foundations, of*science, Clifford was an early
and ardent disciple of the new doctrines. He saw in them an
extension on the widesbscale of the importance and influence
of geometrical kn viniedge to every part of physical science.
Beyond that, judging geometry as a prototype of intellectual
activity, as Clifiord observed its branches multiply and its
roots go deépér, he was convinced that the method of its
emanci»@ﬁbn and growth would aid in the development of
other{phases of speculative thought. His beliefs and his
hopes, his deep interest in geometry are fully encompassed
{in“the lectures on “The Philosophy of the Pure Sciences.”

VI

The lectures open with an analysis of what our senses really
convey to us of the external world. What part of that which
we think we see do we actually see? What part of that which
we claim our senses tell us do they actually tell us? On brief
reflection it becomes clear that just as a story undergoes
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marked changes as it is retold from one person to ihe next,
just as parts of the original arc lost and new parts added
until at last it bears little resemblance to the original, so
the phenomena of the outside world are told and retcld
through the senses and then woven by the brain into a fietion,
its content a distortion of the objects and events constituting
the initial-stimulus. Q

“On entering this room [says Clifford] and looking mp*dly
around, what do I sce? I see a theatre, with a gallery, Gahd with
an arrangement of seats in tiers. [But no, for the]attinost I can
possibly see is two distinct curved pictures of a theatle Lpon the
two retinas of my eyes there are made pictures 6h the scene before
me, exactly as pictures are made upon the\ground glass in a
photographer’s camera. The sensation of Sl‘g\lt which I get comes
to e atdbryutigenthooggh those two pi?tﬁrcs and it cannot tell
me any more, or contain in itself any)more, than is in those two
pictures. Now the pictures are not. solid: each of them is simply
a curved surface variously illureinated at various parts. Whereas,
thervefore, I think I see a sohp[ scene, having depth, and relicf, and
distance in it, reflection tells me that T see nothing of the kind; but
only {(at the most) twe<distinct surfaces, having no depth and no
relief, and only a ind’of distance which is quite different from
that of the solid figures before me,”

\ </
Extending/his deseription, Clifford continues:

“1 sﬁéﬁeople sitting upon these seats, people with heads more
or Iess round, with bodies of a certain shape; sitting in various
p0s1t10ns [How much of that is true?] Of course, I cannot sce
your heads, T can only see your faces. I must have imagined
the rest. But just consider what it is that I have imagined.
Is it merely that besides what I do see I have added something
that I might see by going round to the other side? No, there
is more than that. The complete sensation which I have of &
human head when I look at one is not merely something which I
do not see now, but something which I never could see by any
possibility. T have the sensation of a solid object, and not of a
serics of pictures of a solid object. Although that sensation may
be really construeted out of a countless number of possible pie-
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tures, yet it is not like any of them. I imagine to myself, and seem
to see the other side of things, not as it would look if viewed from
beyond them, but as it would look if viewed from here. I seem to
see the back of your head, not as it would Iook if I get behind you,
but as if T saw it through your face from the spot where I am
standing; and that, you know, is impossible.”

What of the composition of our images? We seem to sed
objects as existing together, but in fact we move our eyes
about and ‘‘see a succession of small pictures very rapidly
changed.” Now only a small part of any scene before Us can
be seen distinctly at once, and so while we really ¢ee & pano-
rama, and not the one large picture we imaginé,‘ ‘yet looking
at the small portion we think we distinctlysee the whole.

As to the impressions gained through apsther of our senses,
Clifford observes: www.dblj thbrary.org.in

“[Suppose when I came into the &oom I gaid:] ‘I put my
hands on the table, I feel a harfl\ flat, [borizontal surface at
rest, covered with cloth.” [ That'statement will also bear check-
ing. There are three things.that really happen:] ‘First, there
is a definite kind of irritation, of certain organs of my skin, called
papille. It is that irritation that makes me say cloth. Secondly,
certain of my muscles &r¢’in a state of compression, and they tell
me that. Thirdly, Pnnake a certain muscular effort which is not
followed by metion.” This is ali that I can really feel; but those
three things,.do’not constitute a hard, flat, horizontal surface
covered withfeloth. As before, I must have imagined the rest.’”

O\ . . .-
Clifford continues with a characteristic flash of humour:

y *i‘ I\jo not suppose that I am advocating any change in our com-
mion language about sensation. I do not want anybody to say, for
instance, instead of, ‘I saw you yesterday on the other side of the
street,’ ‘I saw a series of panoramic pictures in a sort of mosaie,
of such a nature that the imaginations I constructed out of them
were not wholly unlike the imaginations I have constructed out of
similar series of panoramie pictures seen by me on previous oc-
casions when you were present.” This would be clumsy, and it
would not be sufficient. And yet I cannot help thinking that in
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certain assemblies, when some of those who are present are ir an
exalted state of emotional expectation, and the lights are low, even
this roundabout way of putting things might be, to say the Jeust,
a salutary exercise.”

From this analysis of sense impressions Clifford draws the
inference that Q"

‘‘there are really two distinct parts in cvery sensation thatwe get,
There is & message that comes to us somehow; but jnhj}? message
is not 2all that we apparently see and hear and feel. Insgvery sensa-
tion there is, besides the actual message, sometlihg that we im-
agine and add to the message. This is sometimesexpressed by say-
ing that there is a part which comes from thé éxternal world and
a part which is supplied by the mind. But}ﬁowever we express it,
the fact to be remembered is that not-the whole of a sensation is
it adiBeR Bifiere by immediate experience I mean the
actual message—whatcver it is—that comes to us); but that this
experience is supplemented by somethmg else which ig not in it.
And thus you may see thatiit 1s a perfectly real question, ‘ Where
does this supplement comg from?’”

Clifford then p nts out that the spatial aspect of our sen-
sations, the exte\smnal properties of the perceived objects,
the relatlons of distance,

“are always o filled in as to fulfill a code of rules, some called
commen, botions, and some called definitions, and some called
pos’cul&tes, and some assumed without warning, but all somehow
coptamed in Euelid’s Elements of Geometry.”

o's

And these which he calls the “rules [that] are the founda-~
tions of the pure sciences of Space and Motion” ¥ constitute
an important part of the “supplement’ by which we fill in
Our experience,

# “Instead of Space and Motion, many people would like to say Space and
Time. But in regard to the special matter that we are considering, it seems to
me, for reasons which I do not wish to give at present, to be more correct to
say that we imagine time by putting together space and moticn, than that
we imagine motion by putting together space and time.” (**The Philosophy of
the Pure Sciences.” L & E.)
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There are other rules in accordance with which we il in
our sensations, relating, for example, to eontinuity, number,
uniformity; and some of these rules of supplementation are
the foundations of the pure sciences of arithmetic, formal
logic, and geometry.® As to those of geometry:

““There has been for ages a conviction in the minds of men that.
these rules about space are true objectively in the exact or thest-
retical sense, and under all possible circumstances. If two strdight
lines are drawn perpendicular to the same plane, geometers would
have told you for more than two thousand years that these straight
lines may be prolonged for ever and ever without getting the least
bit nearer to one another or further away from oné Another; and
that they were perfectly certain of this. They. kméw for certain
that the sum of the angles of a triangle, no matber how big or how
small it was, or where it was sifuated, mi .Wgyg_ihe exactly
equal to two right angles, neither moretnpr less. And those who
were philosophers as well as geomete;s:khew more than this, They
knew not only that the thing was trug but that it could not possibly
have been otherwise; that it wag.fiécessarily true. And this means,
apparently, not merely that IXnow it must be, but that I know
that you must know that it" must be.”

s\ J
Concerning thess miles of supplementation, Locke, and
more especially Hume, gave the explanation

“that the sup l:e;nent of experience is made up of past experience,
together with/Tinks which bind together perceptions that have
been a,cckstomed to occur together. This fact, that perceptions
and feélings which have frequently occurred together get linked,
AN

" ®“The case of arithmetical propositions is perhaps more easily compre-
Befided in this respect. Everybody knows that six things and three things make
ning things at all possible fimes and places; you cannot help seeing not only
that they do always without exception make nine things, but that they must
do s0; and that the world could not bave been constructed otberwise, For to
those ingenious speculations which suppose that in some other planet there
may alwaye be a tenth thing inevitably suggested upon the union of the six
and the three, so that they cannot be added together without making ten; to
these, I eay, it may be replied that the words number and thing, if used at all,
must have different meanings in that planet.” (" The Philosophy of the Pure
Sciences.” L & E.)
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g0 that one ealls up the other, is called the law of Association, and
has been made the basis of scientific Psychology. According to
these explanations of Locke and Hume . . . all the knowledge we
have that the rules are right, or may be objectively wverified, is
really derived from experience; only it is past experience, which
we have had so often and got so accustomed to that it is now really
a part of ourselves.

“But Kant, after being staggered for some time by Hume's\ex-
planation, at length said, It is impossible that all your kneslcdge
can have come from experience. For you know that the axioms of
mathematics are absolutely and universally true, and.no experi-
ence can possibly have told you this. However ofted you may have
found the angles of a triangle amount to twolsight angles, how-
ever accustomed you may have got to this experience, you have
no right to know that the angles of ev ry,\:)ossible triangle are
equal to two right angles, nor indeed thi{ those of any one triangle
are A IRANE S50 equal. Now'you do know this, and you
cannot deny it. You have therefor8some knowledge which eould
not possibly be derived from experience; it must therefore have
come in some other way ; or thére is some other source of knowledge
besides experience.’ 24

“At that fime them’% no answer Whatever to this. For men
did think that they*knew at least the absolute universality if not
the necessity of the mathematical axioms. To any one who ad-
mitted the necessity, the argument was even stronger; for it was
clear that mo- experience could make any approach to supply
knowledgéyof this quality. But if a man felt absolutely sure that
two st t lines perpendicular to the same line would never meet,
however far produced, he could not maintain agaivst Kant that
~alDknowledge is derived from experience, He was obliged to admit
\_the existence of knowledge a priori, that 15, knowledge lying ready
- in the mind from from the first, antecedent to all experience.”

How is it possible to have knowledge of objects antecedent;
to all experience, a priori knowledge? Clifford gives Kant’s

solution to the problem with the aid of 5 singularly appro-
priate analogy:

“If 2 man had on a pair of

: : green spectacles, he woul
everything green. And if he found out thjs property of Eil; ('ispsei
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tacles, he might say with absolute certainty that while he had those
spoctacles on everything that he saw without exception would be
green.

‘“‘Everything that he saw’; that is to say, all objects of sight
to him. But here it is clear that the word objeet is relative; it means
a representation that he gets, and has nothing to do with the thing
in itself. And the assertion that everything is green would not be
an assertion zhout the things in themselves, but about the regre-
sentations of them which came to him. The colour of thes;—:s\i'epre-
sentations would depend partly on the things outside andpartly
on his spectacles. It would vary for different thmgs, but there
would always be green in it.

“Let us modify this example a little. I know‘for certain that

the colour of every object in the universe I8 miade up of colours
that lie within the range of the visible s . This is a pare.ntly
a universal statement, and yet I Khow' f%\ %l trud of %hmgs which
it is impossible that I should ever s¢e\How is this? Why, simply,
that my eyes are only affected by hght which hes within the range
of the visible spectrum. Now I« Ba.y that this case is only a little
modified from the previous pﬁe "The green glass lets in a certain
range of light; the range is ‘very little increased when you take it
away. Only in the scconthcase it bappens that we are all actually
wearing very nearly, the same spectacles. That universal state-
ment which 1 magie\l\;. true not only of objects as they appear to
me, but also of.ebjects as they appear to you. It is 2 statement
about object®;“that is, about certain representations which we
perceive. Ft'may therefore so far have its origin in the things of
which ‘tsQeSe are representations, or it may have its origin in us.
And We happen to know that in this case it is not a statement
abqut external things, but about our eyes.
N\ Admitting, then, that the objects of our sensations are repre-
¢entations made to us; that their character must therefore be
partly dependent upon our own character; whai properties of
these objects should we naturally suppose to have this origin, to
be derived from the constitution of our minds? Why, clearly, those
which are necessary and universal; for only such properties can
be so derived, and there is no other way in which they can be known
{0 be universal.

“ Accordingly, Kant supposes that Space and Time are necessary
forms of perception, imposed upon it by the perceiving mind; that



x1 Introduction

things are in space and time as they appear to us, and not in them-
selves; and that consequently the statement that all things exist
in space and time is a statement about the nature of our percep-
tion and not about the things perceived. . . . And it is just because
these statements are about me [just as the statement about the
colours of things was really a statement about the eyes of the ob-
server and not about the things themselves] that I know ther to
be not only universally, but always necessarily true about the ob~,
jects I perceive; for it is always the same me that perceives therf2/
ot at any rate it is a me possessing always the same faculties of
representation. N

“Now observe what it is that this theory does with general
statements; what is the means by which it gets zid of them—for
it does get rid of them. It makes them into particular statements.
Instead of being statements about all po 'blé\ﬁlaces and times
and things, they are made out to be stat€ments about me, and
ﬁz\g};&\g‘ ?ﬂ?&-&’%ﬁ&%&aﬂ they h"‘f{‘? the same faculties that T

s

*

Clifford then shows why the' method by which Kant at-
tempted to answer the question: “‘ Are there any properties
of objects in general whith are really due to me and to the
ways in which I pe}'(h\ve them, and which do not belong to
the things themselves?” was inadequate. For just as in the
case of the mamwith the green spectacles, the way to clinch
the argursert®)that he necessarily saw everything green be-
cause of his’spectacles would be “to take him to a looking
glass and show him that these spectacles were actually upon

higgi’osé,” the answer to the question Kant set out to
answer

“musf: be sought not in the subjective method, In the conviction
of universality and necessity, but in the physiolegical method, in
the study of the physieal facts that accompany sensation anci of
the phy.sical properties of the nervonus system. The mate;'ials fo

this valid eriticism of knowledge did not exist in Kant's ti ;
believe that they do exist at present to such an extent at leastn;:.to

indicate the nat i iticism i
ms];_ .” nature of the results which that criticism is to fur-
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After considering opinions of Berkeley, Hume, Whewell,
Mili,” and Spencer as to how concepts of every kind are re-
lated to experience, Clifford continues:

YTt seems to me that the Kantian dilemms about universal
propositions s just as valid now, in spite of these explanations, as
it was in his time. How am I to know that the angles of a triangle
are exactly equal to two right angles under all possible circuin-
stances; not only in those regions of space where the solaf\system
has been, but everywhere else? The accumulsted experience of all
my aneestors for a hundred and fifty million years is né miore compe-
tent to tell me thaf than my own experience of thedagt five minutes.
Either I have some source of knowledge oth#t than experience,
and I must admit the existence of a priori fmiths, independent of
experience; or I cannot know that any uniyersal statement is true.
Now the doctrine of evolution itself forbids me to admit any tran-
scendental souree of knowledge ;ao%ﬁlamldriyvmgmconclude in
regard to every apparently univérsil statement, either that it is
not really universal, but a pagfiéular statement about my nervous
system, about my apparatufef thought; or that I do now know
that it iz true. And {o this coneclusion, by a detailed examination
of various apparently;~tﬁ1iversal statements, I shall in subsequent
lectures endeﬂ.voux\ga Tead you.”

Clifford theg\goes on to show that while Kant’s arguments
for the univ‘:e\rsality of geometric truths were valid against

® “Qoe¢"broad result of non-Buelidean geometry, even in its earliest form,
was that the geometry of actual space is, at least in part, an empirical study,
not g\branch of pure mathematics. It may be said that empirieists, such as
TS ~Mill, always based geometry upon empirical observation. But they did
£ the’ same with arithmetic, in which they were certainly mistaken. No one
before the non-Euclideans perceived that arithmedic and geometry stand on a
quite different footing, the former being continuous with pure logie and inde-
pendent of experience, the latter being contimuous with physies and de-
pendent upon physical data, Geometry can, it is true, be still studied as a
branch of pure mathematies, but it is then hypothetical, and cannot claim
that its initial hypothesis (which replace the axioms) are true in faet, since
this is & question outside the scope of pure mathematics. The geometry which
is required by the engineer or the astronomer is not a branch of pure mathe-
matics, but a branch of physics. Indeed, in the hands of Einstein geometry
has become identical with the whole of the general part of theoretical physies:
the two are united in the general theory of relativity.” (Berirand Russell:
The Analysis of Matler, London, 1927.)



xlii Introduction

Hume they failed against the thesis of the non-Euclideans:
(a) the axioms of traditional geometry ‘‘are convenient
assumptions and not a priort necessities of thought or per-
ception’’; (b) there are possible any number of a prior: pos-
tulational systems, in addition to the Euclidean, defining
different kinds of ideal space; {¢) the geometry of our world ¢
space is a matter of experience, and as that is enlarged, the

refinement of our geometry must continue. D

"
% Ny

VIII O

Perhaps the two greatest nineteenth-centtityvadvances of
thought were made by mathematics and bielogy. While the
first deposed, as sole authority, a systed regnant almost
since the beginning of science, biology*'took man from his
pedestalofiinolithonaedaitigned hiny a place in the Linnzean
table. ““While Huxley, the Duke,of Argyll and the bishops
were exciting themselves andvthe world about Darwin and
the Book of Genesis,” * the non-Fuclideans reaffirmned, as
consolation for their anmthilating scepticism m demonstrat-
ing the tentative character of human judgments even in
mathematics, the Yalmost unlimited freedom of man’s
thought. In thistédventure of ideas, Clifford by tempera-
ment and spdetlative powers felt himself at home. How he
appraise &he work of Lobachevsky, almost lyricaily, is re-
vealed m\t e following passage:

.{What Vesalius was to Galen, what Copernicus was to Ptolemy,
that was Lobatchewsky to Euclid. There is, indeed, & somewhat
instructive parallel between the last two cases. Copernicus and
Lobatchewsky were boeth of Slavie origin. Fach of them has
brought about a revolufion in scientific ideas so great that it ean
ouly be compared with that wrought by the other. And the reason
of the transcendent importance of these two changes is that they
are cha..nges in the conception of the Cosmos. Before the time of
Copernicus, men knew all about the Universe. They could tell you

% Sir William Dampier: A History of Science and Its Relutions with Phi-

losophy and Letigion. Cambridge, England, 19386,
T
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in the schools, pat off by heart, all that it was, and what it had
been, and what it would be. There was the flat earth, with the blue
vault of heaven resting on it like the dome of a cathedral, and the
bright cold stars stuck into it; while the sun and planets moved
in erystal spheres between. Or, among the better informed, the
earth was a globe in the centre of the universe, heaven a sphere
eoncentric with if; intermediate machinery as before. At any ratep
if there wag anything beyond heaven, it was a void space that
neaded no further deseription. The hlbtory of all this could’ be
traced back to a certain definite time, when it beganj, “behind
that was a changeless eternity that needed no further‘hsstory. Its
future could be predicted in general terms as far forwa.rd as & oer-
tain epoch, about the precise determination of which there were,
indeed, differences among the learned. But after that would
come again a changeless eternity, whlch was fully accounted for
and described. But in any case the %\Ee was 2 known thing,
Now the enormous effect of t-l\f’ew&bp niican syste and of the
astrenomical discoveries that havelollowed it, is that in place
of thig knowledge of a little, wluch was called knowledge of the
Universe, of Eternity and Immen31ty, we have now got knowledge
of a great deal more; but we onl\r call it the knowledge of Here and
Now. We can tell a greatideal about the solar system; but, after
all, it is our house, \inot the city. We can tell something about
the star-system towhich our sun belongs; but, after all, it is our
star-systemn, and’niot the Universe. We are talking about Here
with the consgeigusness of a There beyond it, which we may know
some time;\Budt do not at all know now. . . . This, then, was the
change‘&Ee“cted by Copernicus in the idea of the Universe. But
theres Was left another to be made. For the laws of space and mo-
tkon\ .. implied an infinite space and infinite duration, about
“whose properties as space and time everything was accurately
known. The very constitution of those parts of it which are at
an infinite distance from us, ‘geometry upon the plane at infinity,’
18 just as well known, if the Euclidean assumptions are true, as
the geometry of any portion of this room. ... So that here we
have real knowledge of something at least that concerns the
Cosmos; something that is true throughout the Immensities and
the Iiternjties. That something Lobatchewsky and his suecessors
bave taken away. The geometer of today knows nothing about the
nature of actually existing space at an infinite distance; he knows
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nothing about the properties of this present space in a past or future
eternity, He knows, indeed, that the Jaws assumed by Euclid are
true with an accuracy that no direct experiment ean approach . . .
but be knows this as of Here and Now; beyond his range is a There
and Then of which he knows nothing at present, but may ultimately
come to know more. So, you see, there is a real parallel between
the work of Copernicus and his successors on the one hand, and

the work of Lobatchewsky and his successors on the other. . . A\

Completing his theme, Clifford analyses the four fanda-
mental postulates upon which the ordinary Euclidéan con-
ception of space is based. What is their necessagy@rder and
classification? Which postulates are true indépendently of
the others? By adopting the contraries ofyeertain of the
postulates, what new geometries can de\ﬁaioped?

The first postulate states that spateis continuous, with-
out bresks o gapy ef-geygkind. But eontinuity, Clifford ar-
gues, is an impression gathered(feom our senses. And with
respect to space our senses ay be deceiving us as thoroughly
as when they tell us that water is continuous, that a moving
picture has no breaks or{gaps. In such instances science cor-
rects our impressions &o- that we recognize the ““continuouns”
medium or phenohenon as consisting of separate little pieces,
s0 closely joined or following upon one another so quickly
in time that werare unable to perceive the discontinuity and
separate%ss: The instruments of physics and chemistry
furthermreveal the breaks, the atomicity, of smooth, compact
objects wholly unbroken in appearance. What proof have
e that space is not of the same nature, smooth in appear-
ance but actually criss-crossed, say, by a lacework of tiny
fissures. The Euclidean postulate of continuous space there-
fore waits upon experience. While, as Clifford admits, ob-
servation has not yet disclosed instances of a discontinuous
space, there Is no certainty, nor even a likelihood, that it
will never do so. Continuous space is not one of the “efer-
nities”; it is not necessarily and universally true.

_ The second postulate relates to “the fatness of space in
its smallest parts.” Many attempts have been made to de-
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fine this concept simply. But it is not a simple idea, especially
in relation to space.’ The matter is certainly put more easily
by analogy, in two dimensions. Clifford gives the example
for a curved surface:

. If you perceive a portion of the surface of a very large sphere,
such as the earth, it appears to you to be flat. If, then, you take a
sphere of say a foot diameter, and magnify it more and moré, you
will find that the more you magnify it the flatter it gets. % Any
carved surface which is such that the more you ma,gnify’it the
ﬂatter it gets, is said to possess the property of elementa.ry flat-
ness.’

H.J.S. Smith in his Introduction to Cliffo’fd*s Mathematical
Papers offers what is perhaps the mos¢ inituitable extension
of the concept to space of three dirmy {sions: A space which is
flat in its smallest parts is sowonsbibutedrithatgifranywhere
in it we take three points very;;iezi.r to one another and join
them by the shortest lines that can possibly be drawn, the
triangular figure so formed, Wlll lie very nearly in a plane, .

The universality of. this postulate Clifford also doubts

For as he says: ...‘\

“we have merely 0 'i)oint to the example of polished surfaces.
The smoothest Gurface that can be made is the one most com-
pletely coveredwith the minutest ruts and furrows. Yet geometrical
constructions’can be made with extreme accuracy upon such a sur-
face, op{the supposition that it is an exact plane. If, therefore,
the sharp points, edges, and furrows of space are only small enough,
thgre' will be nothing to hinder our conviction of its elementary

*ﬁatness It has even been remarked by Riemann that we must
not shrink from this supposition if it is found usefu] in explaining
physical phenomena.” %

8 As Clifford remarks, Euclid’s less general equivalent of the postulate
seems so childishly self-evident, so tautologous, “that you will wonder how
anybady could make all this fuss,” His fourth postulate says: “ All right angles
are equal.” It requires the subtlest reasoning and the sharpest scrutiny of the
obvious to discern the fact that this “self-evident” postulste entails the not so
scli-evident principle of elementary flatness.

=2 “Now it seems that the empirical notions on which the metrical deter-
minationg of space are founded, the notion of a solid body and of & ray of
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The third postulate is that of superposition. “According
to this postulate a body can be moved about in space with-
out altering its size or shape.” It is at the base of Euclid’s
propositions relating to congruence. In another form the
postulate states that “all parts of space are alike.” Con-
sidered jointly with the fourth postulate, which Ciifford,
names that of *similarity,” the two together are equivalent
to the assumption that space is uniformly of zero curvgtur’e.

“ According to this postulate {the fourth], any figuré, may be
magnified or diminished in any degree without altering.its shape.
If any figure has been constructed in one part of ;pjé,ée, it may be
reconstructed to any scale whatever in any oshier’part of space,
80 that no one of the angles shall be altered, thugh all the lengths
of lines will of course be altered. This sgé{hs to be a sufficiently
obvicus induction from experience; for\we have all frequently
seen different dhewsbibtieysarfidthape. 2. . It is easy to show that

this invalves the two postulatesiol Euclid: ‘Two straight lines

cannot enclose a space,’ and ¢ lenés; in one plane which never meef
make equal angles with every~ether line.””

If the first two post‘pihtes are atiacked on the side of *“the
very small,”” the third and fourth postulates are vulnerable
on the side of ‘the very great.” To the extent that a given
space deviztes“from the standard of elementary flatness ®
extraordinanly complicated ad hoc geometiries may be re-
quiredFHese are closely tied to modern concepts of physics,
partly }oreshadowed by Clifford, suggesting, roughly speak-

mg that all phenomena, even matter itself, consist of wrinkles

l%ght, cease to be valid for the infinitely small. We are therefore quite at
Lberty to suppose that the metric relations of space in the infinitely small do
not conform to the hypotheses of geometry; and we ought in fact to suUpposg

it, if we can thereby obiain a simpler explanation of ph ” (Ri
. ‘ phenomena.” (Riemann:
Ueber dic Hypathesen, welche der Geometrie 2y Grunde le (

J gen. Clifford’s transia-
tion.) '
8Tt should be remembered that elementary flatpess does not preclude
curvature. A curved surface which grows less curved the more it is enlarged
has this property; “but il every suceeeding power of owr imaginary miero-

scope disclosed new wrinkles and inecualities wittoas end, then the surface
does not possess the property. .. ."” (L & E)
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or changes of curvature in space.® But if the postulate of ele-
mentary {latness is retained and the fourth postulate of
“eimilarity,”’ in so far as it relates to parallels, is abandoned,
the way is open for the conventional non-Euclidean geome-
tries. Assuming a constant negative curvature of space, the
appropriate non-Euclidean geometry is that of Lobachevsky.
Neow referred to as a geometry of hyperbolic space, Lobg-
chevsky’s system replaces the parallel postulate of Euelid,
with a hypothesis that through a given point in the pkinc at
least two lines parallel to a third may be drawn,. Ih' Loba-
chevsky’s geometry $he sum of the angles of eyery triangle
is less than 180° and only triangles equal in gréa can have
the same angles. The non-Euclidean geomietry of Riemann,
preferred by Clifford, assumes a constant positive curvature
of space. Tollowing Felix Kiein’s téfminology, in current
use, this geometry is known wasxellptidiblérpdopts the hy-
pothesis that through a given point there can be drawn not
a single line parailel to a given line and infers that the sum
of the angles of every trifxﬁglé is greater than 180°.% Clifford
describes a space of this Kind as follows:

¥ In this connection i 'n:}xy be of interest to quote from an abstract of one
of Clifford’s papers, é}@eﬁring in the Cambridge Philosophieal Society’s P‘ro-
cezdings {1876). (Phe subject was introduced at greater length to English
mathematiciansAnh Elifford’s transiation of Riemann’s inaugural dissertation:
“On the Hypot}}eses that Lie at the Bases of Geometry.”) The paper bearing

the title “@nthe Spacc-Theory of Matter” eoncludes with these words:
“ A J Bold in fact

N {}.)\That- small portions of space are in fact of a nature analogous te little
hillg8n & surfece which is on the average flat; namely, that the ordinary laws

m\bﬁ reometry are not valid in them.

#(2) That this property of being curved or distorted is continually being
passed on from one portion of space to another after the manner of a wave.

#(8) That this variation of the curvature of space is what really happens in
that phenomenosn which we call the motion of metter, whether ponderable or
etherial.

“(4) That in the physical world nothing else takes place but this variation,
subject (possibly) to the law of continuity. . . .7

& “+Thig conception {of & constant positive curvature] lies at the bottom
of Clifford’s theory of biquaternions, to which he devoled much continuous
thought, and which was the origin of his researches into the classification of
geometric algebras, A space of constant positive curvature is most easily repre-
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“ . what is the nature of things on the supposition that the curva-
ture of all space is nearly uniform and positive? In this case the
Universe, as known, becomes again a valid conception; for the
extent of space is a finite number of cubic miles. And this comes

‘aboub in & curious way. If you were to start in any direction what-

gver, and move in that direction in a perfect straight line ac-
cording fo the definition of Leibnitz; after travelling & most pro-

digious distance, to which the parallactic urit—200,000 times the
diameter of the earth’s orbit—would be only & few steps, you
would arrive at—this place. Only, if you had started upwatds,)
you would appear from below. Now, one of two things would be

true. Either, when you had got half-way on your joumey, you

came to a place that is opposite to this, and which you @ust have
gone through, whatever direction you started in;-0f elve ali paths

vou could have taken diverge entirely from eachhNother till they

meet again at this place. In the former case{dvery two straight

lines in a plane m?ellj‘, in two 0ints, in the Jatter they meet only in

one, Uﬁ’dﬁwtﬂﬁ%%ﬁplc?sﬁ{ibn of a positivg girvature, the whole of

geometry is far more complete and inferesting; the principle of

duality, instead of half breaking dewn over metric relations, ap-

plies to all propositions withouttexception. In fact, I do not mind

confessing that 1 personally\have often found Telief from the

dreary infinities of homaleidal space in the consoling hope that,

after all, this other ma{'\Be the frue state of things.”

This discussionyof* The Philosophy of the Pure Sciences,”
extended af solin\e length, has none the less been confined to
Clifford’s tr@a}ment of geometry. His examination of other
fundarx{ehi;af concepts in science maintains the same high
level, J have been at some pains to quote substantial por-
tioushin full so as to preserve the flow of Clifford’s style, the
Trichness of his exposition, the aptness of his humour and il-

sented to the mathematician (in the absence of an ibili 1 ing i
: d v possibility of imaging it
to the mind) as the locus of an equsation of the form Y Bos

£+ 4 2 + u? = constant

in & flat space of four dimensions in which xy2w are rectangnlar coordinates,
1t is related to the tewo-dimensional surface of a sphere, just ag in ordinary

geornetry space of three dimensions is related to a plare surface,” (H, J. S
Smith, op. it.) T
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lustrative gifts. It seemed appropriate on the further ground
that this group of lectures, like all his writings, is out of
prin$, and nowhere except perhaps in his technical memoirs
are we afforded a befter exhibition of Clifford’s powers, a
deeper insight into the reach and fecundity of his thought.

IX O

Tn 1874 Clifford was elected a Fellow of the Royal'\Seciety,
having declined earlier to have his name put forward, though
sertain of election, on the ground that he “ditl not want to
ho respectable yet.” * The same year he delivered a number
of leetures on popular science as well ag\oursocial and ethical
philosophy. Throughout his life Cliffgrd searched for a gen-
eral philosophy he could make his.fsw\rn, but developed none
that stands out as clearly as My Frteipéitiverafithe pure
sciences. One can make littlepf his theory of ““mind-stuff,”
obscure, involved, and uneenvincing.” A harsh critic might
condemn it with Clifford’s own phrase as ‘“‘that rhetoric
which frequently ass{tmes the name of philosophy.” * Pol-
lock implies that;‘fﬁﬁe coneept of ‘‘mind-stuff” was a half-
hearted idea that could not have satisfied Clifford for long,
little more than a scaffolding in his thought: he may have
advanced i 4s a sheer intellectual exercise without even a
momentary commitment of belief.®

Exaldtionist doctrines, to which Clifford gave so deeply
of 151'3 mind, were the framework of his ethical preccpts. To

cait oven greater extent his temperament controlled his social
Jand cthical views. These were imbued with the ideals of

L& E(P).

@ (lifford “was more inclined than most English psychologists to believe
in the possibility of constructing a definite metaphysical system, in which
he was probably influenced by his admiration for Spinoza. .. .He agreed
with Berkeley that mind is the ultimate rcality; but beld that consciousness
as known to us is built np out of simple elements or atoms of ‘mind-stuff’—
the characteristic phrase which gives the keynote of theories full of sugges-
tions, and showing curious affinities to other philosophies, but not fully worked
out.” {Article on Clifford by Leslie Stephen, Dictionary of National Biography.)

&L &E, ® L& K(P).
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freedom, with “the duty of independence and spontaneous
activity. . . . That alone was right which was done of one’s
own inner conviction . .. that was lifeless and evil which
was done out of obedience fo any external authority.” *
“There s one thing in the world,” Chfford wrote, “more
wicked than the desire to command, and that is the will to
obey.” 4

Clifford attempted, in his writings on social, religious i
ethical beliefs, to develop his theories on the same oljeetive
basis as underlay his philosophy of science. It was, eonsist-
ent with his precept of denying the name of kj)bwledge o
any result not reached by scientific methedh® His test of
theories lay in action and he sought maordl and religious
values—tio quote from a passage rememb&ed, but its author
forgotten—'‘within the flow of experience, not in a realm of

re-existent being outside it.” A§ 2 protestant against es-
fablish“éki[‘ﬁgﬁé?g,l%?gyagrgéﬁmﬂré.prepared to acce;g)t eternal
values in ethics than in geomgtry. His views are summarized
in several passages from the essay on “The Scientific Basis
of Morals”’: %

“Every scientiﬁx{a@t is & short hand expression for a vast
number of practjeal directions: if you want so-and-so, do so-and-
so. If with this theaning of the word ‘Beience,’ there is such a thing
as & scientificybasis of Morals, it must be true that,——(1) The
maxime:aﬁ. “thic are hypothetical maxims, (2) derived from ex-
periel\l{&"{?y} on the assumption of uniformity in nature. . . .”

:.\’Eﬁhical maxims, Clifford holds, are learned by the tribe
{ and not by the individual.

19 Thid, L & B (Chfford’s letters).

© “’T'ake Professar Clifford’s article on the ‘Ethics of Belief.! Yo calls it
‘guilt’ and ‘sin’ to believe even the truth without scientific evidence, . .
What we enjoy most in & Huxley or & Clifford is not the professor with his
}_earni_ng, but the human personality ready to go in for what it feels t0 be right
w spite of all appearances,” (William Jumes: ©The Sentimoent of Ration:
ality,” from Fhe Will to Believe.) ‘There is g further reference to Clifford, a

(:Ompa.,risnn' uf. his views on paychology with those of Thomas Huxley, in
Ja,:inae;‘ S&Pgrmples af Ps_ycholagy, Vol 1 {edition of 19271, pp. 130-2.



A

Introduction li

““Those tribes have on the whole survived in which conscience
approved such actions ag tended to the improvement of men’s
characters as citizens and therefore to the survival of the tribe.
Hence it is that the moral sense of the individual, though founded
on the experience of the tribe, is purely intuitive; conscience gives
no reasons. Notwithstanding this, the ethical maxims are pre-
gented to us as conditional; if you want to live together in this,
complicated way, your ways must be straight and not crooked,
you mugt seck the truth and love no lie. Suppose we ansger) ‘I
don’t want to live together with other men in this coraplicated
way; and so I shall not do as you tell me.” That is ngt*the end of
the matter, as it might be with other scientifig precepts For
obvious reasons it is right in this case to reply, “Then in the name
of my people T do not like you,” and to expres\this dislike by ap-
propriate methods. And the offender, beings descended from a, social
race, is unable to escape his consciengg, gﬁq_ Yqige | ﬁ]lbal self
which says, ‘In the name of the trlbe {hate myself or this treason
I have done.”” "

~

But while ethieal mamms chﬁ'er from scientific precepts
in their compulsory aspect thcy rest upon the same assump-
tion of uniformity i in, nature For that uniformity underlies
the possibility of¢eéven unconscious adaptation to experi-
ence, of languagehand of general conceptions and statements,
and without that adaptation the sense of moral reprobation
and responbxblhty would not come into being,

“It \&y be asked ‘Arc you quite sure that these observed uni-
fOHDLtw\between motive and action, between character and mo-
tivey" between social influence and change of character, are ab-
Sotutely exact in the form in which you state them, or indeed that
they are exact laws of any form? May there not be very slight di-
vergences from exact laws, which will allow of the action of an
“uncaused will,” or of the interference of some ““extra-mundane
force”?’ T am sure I do not know. But this I do know: that our
sense of right and wrong is derived from such order as we can ob-
serve, and not from such caprice of disorder ag we may fancifully
conjecture; and that to whatever extent a divergence from exact-
ness became sensible, to that extent it would destroy the most
widespread and worthy of the acquisitions of mankind.
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. . . By these views we are led to conclusions partly negative,
partly positive; of which, as might be expected, the negative are
the most definite.

“Firat, then, Ethic is & matter of the tribe or community and
therefore there are no ‘self regarding virtues.’ The qualifies of
courage, prudence, ete., can only be rightly encouraged in so far as_
they are shown to conduce to the efficiency of a citizen; that is;
in so far as they cease to be self-regarding. The duty of private
judgement, of searching after truth, the sacredness of belief svhieh
ought not to be misused on unproved statements, follow” only
on showing of the enormous importance to society’\of a true
knowledge of things. And any diversion of consgiénée from its
sole allegiance to the community is condernnedl@ priori in the
very nature of right and wrong,. RN

‘“Next, the end of Ethic is not the gredtest happiness of the
greatest number. Your happiness is of\bo uise to the ecommunity,
except in 8o far ag b iendsoby. make yow's more efficient citizen—
that ig to say, happiness is not tobg'desired for its own sake, but
for the sake of something else. I£'any end is pointed to, it is the
end of increased efficiency im\each man’s special work, as well
as in the social functions which are common $o all. . . .

“ Again, Piety is not, Altruism. Tt is not the doing good to others
as others, but the service of the community by a member of it,

who loses in that géxvice the consciousness that he is anything dif-
ferent from the'¢ommunity. . . .”

On bs;lsir&:e, Clifford’s more formal system of ethics is
stilted-By comparison with the warmth and wisdom so mani-
festyin"his personal conduct or letters. While he was never

) ~given to poutifying, his ethieal philosophy appears old-
jashioned in an age of Freud and Marx, of general moral
and intellectual uncertainties; an age which has veered away
from the tidy scientific materialism of the nineteenth century
even as it has grown sadly aware of the limitations of science
in meeting its social and ethical problems. That we are in need
of more scientific method rather than less in all our exertions
is a belief that men of reason share with Clifford, Tt is simply
that l.1e would have looked to science for solutions which we
are either oo wise to expect or too eynical to perceive.
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In Chfford’s personal life there was never a trace of cant,
hypoerisy, or self-righteousness. Writing to Lady Pollock on
his ““ideal theory” of behaviour, he eoncludes, character-
istically: “* All this, by the way, is only theory; my practice
is just like other people’s.” ¥ Free from pretentiousness
himseli, Clifford was sharp in eriticizing it in others. Of an
acqusintance about to undertake a work in phﬂosophy he
remgrked:

"N

“He is writing a book on metaphysics, and is really & eut out for
it; the ciearness with which he thinks he understands things and
his toial inability to express what little he knoWs “will make his
fortuns as a philosopher.” %

But he was incapable of malice or, \pérsonal enmity. Once

he wrote:
w\-.z W dbra ulibrary org.in

A great misfortune has fallen upon me; I shook hands with
~——. 1 believe if all the murdelfi?’rs’and all the priests and all the
liars in the world were united iiito one man, and he came suddenly
upon me round a comer and said, ‘How do you do?’ in a smiling
way, I conld not be rude to him upon the instant.” *

In a letter Clifford wrote to his wife the year before they
were married, fhere is & noble expression of his faith: ¥

“8uh th fe) is room for some earnest person to go and preach
arcund maa simple way the main straightforward rules that
society-hds unconsciousty worked out and that are floating in the
air;s tig» do as well as possible what one can do best; to work for the
lmprovement of the social organization; to seek earnestly after
truth and only to accept provisionally opinions one has not in-
guired into; to regard men as comrades in work and their free-
dom as 5 sa,cred thing; in fact, to recognize the enormous and fear-
ful difference between truth and falsehood, right and wrong, and
how truth and right are to be got at by free enquiry and the love
of our comrades for their own sake and nobody else's.”

4 L & FE (Clifford’s letters). ¢ L & E(P).
4L & E(P). # [, & E (Clifford's letters).
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On April 7, 1875 Clifford married Lucy Lane. When he
took leave of absence from University College on the occasion
of his marriage, he informed “his class that he was obliged
to he absent on important, business which would probably not ¢
oecur again.” * His wife outlived him by half a century aqa
became well known as a novelist and dramatist. Their m&r-
riage was one of unmixed happiness, and the two litile- giriC
that were born to them brought Clifford great joy. &8 loved
all children, and for his own delighted in making up new
games, fairy fales, and poems. Some of hig fables he con-
tributed to a collection, The Liitle People, H# recognized the
urgent need to plan the education of children so as to make

it abive and mte;dlrue1 1ngy andito exten-d s opportunities and
its benefits’ P

“I bhave a scheme [he wrote to Pollock in 1876) which has
been communicated in par. to MacMillan, and which grows like
a snowball. It is founded on“Pleasant Pages the book I was taught
ouf of ; which s g ser\ of‘ten minutes’ lessons on the Pestalozzian
plan of making theXids find out things for themselves: history of
naughty boys ony Mohday, animals on Tuesday, bricks on Wednes-
day, Black Priie# on Thursday, and so on. . . . Well, I first want
that brought.\up to today, both in choice of subject and in ac-
curacy \ then I want it taught on the Russian system, in dif-
ferentlanguages on suceessive days . . . more particularly we must
getf\pubhshed excellent liftle ms,nuals at twopence or threepence

{Torthe use of Board and other primary schools. I do not even
¥now that penny schoolbooks would not be a suecessful move .
printed by the million. . . . Of such a size could be made a very

good elementary schoolbook of arithmetic, geometry, animals,
plants, physies. .. "9

In a letter to Lady Pollock after the birth of his first child
Clifford wrote: %

BL&E (P, 8 L & B (Cliford’s letters).  Thid.
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“T wrots to Fred about the education of cur infants. T am very
glad we have both begun with girls, because it will be so good for
the cther children to have an elder sister. . . . I have thought of
a way o make them read and write shorthand by means of little
sticks (not to whop them with but to put together on a table and
make the shorthand signs). Ask G whether she thinks they had
better learn to sing on the sol-fa system; it is very amusing and®
geers 0 e more adapted for children than the other. Of goyrse
I ean tesch them to stand on their heads.” A

As for the cthical training of children, in his last'essay, and
one of his best, “Virchow on the Teaching of B¢ience,” ap-~
pearing in Nineteenth Century, April 1878, .Clifford makes a
strong plea against the teaching of “‘unpxgved doctrine about
body and suind; the conclusion that 4/man’s consciousness
survives the decay of his body.” We\Paws notightodao,teach
little children as a known fact{">what is “‘a hope, a con-
jecture, an aspiration,” howeéver strongly we may desire
that it should be true, ““that better evidence will shortly be
fortheoming.” If you must'teach it at all, teach it as some-
thing that may possibiy be true but is certainly not the es-
tablished fact. THelreasons for this caution ““are deeper and
stronger than the merely intellectual ones, because of the
vast hold of, {his doctrine upon the hearts, and its serious
influence upon the actions of men.” For one thing, by teach-
ing it 4go)early, you “make it familiar as an ill-understood
conceplion, weaken the power it might have for good and
helpithe perversion of it to superstitious uses. The second
{pdint to be considered is the frightful loss and disappoint-
foent you prepare for your child if, as is most probable in
thesc days, he becomes convinced that the doctrine is founded
on insufficient evidence. It is not merely that you have
brought him up as a prince, to find himself a pauper at
eighteen. He may have allowed this doctrine to get inex-
tricably intertwined with his feelings of right and wrong.
Then the overthrow of one will, at least for a time, endanger
the other. . . .

The hanninece CTfard shared with children, his unaf-



i - Introduction

fected gaiety in their company, his deep concern with thoir
problems of learning and adjustroent, stand in poignant con-
trast to the brief period he lived to spend with his own.

In 1876 the first alarming signs of tuberculosis appeared. All
his life he had burdened his physical powers. The abundant
but self-consuming nervous energy, the warfare against false
beliefs, the self-goading search for new riddles and new chalc™
lenges, the full submission to the demands of his intellect, wexe
altogether out of proportion to what the physical maehine
could endure. His mother’s early death should have Served
as forewarning and precept; there were other signs, before
the more serious ones, that he was using his.gubstance faster
than it could be replaced. Rational in other\thatters, to this
he would give no heed. Indeed in his chapming and perverse
naiveté he imagined that to overtax/himself, to talk or write
througibgigg Shtireppightrgias good)“training in versatility
and disregard of circumstancesd ™ But, as Pollock remarks,
“he fancied himself to be making investments when he was
in fact living on his capitel¥

Reluctantly he agreed$o take six months’ leave of absence,
which he spent travelling with his wife in Algeria and Spain.
The rest and charlge were beneficial and he returned to Eng-
land somewhaf improved. In the next year and a half, de-
spife his itlnesd and the distress oceasioned by the death of
his fathefy)Clifford accelerated his work, issuing two of his
most ‘egleébrated papers, §*On the Canonical Form and Dis-
sechion of a Riemann’s Jurface,” “On the Classification of

b 3

boe1,” % along with other mathematical memoirs, an excel-

) ul&E@®. # Thid,

% Unfortunately an unfinished memoir.

“The application of Abelian functions to this new aspect of geometry
awakened all Clifford’s entbusiasm. He spoke to me of this part of his theory
as opening a boundless field for new researches~—as ‘altogether oo big a thing'
ior one man to manage. . .. How much may have perished unrecorded we
cannot tell, but, however this may be, no geometer will look for a more splen-
did monument of Clifford’s genius, or for a more touching mesnorial of his
early death, than is to be found in the unfinished pages ‘On the Classification

of Loci’ which embody the last and perhaps the greatest effort of his inventive
powers.”” (H. J. Btephen Smith, op. cit.}
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lent volurne on dynamics, a number of essays, lectures, and
reviews. He made no concession in his manner to the terrible
disease that was destroying him; he charged his strength as
carelessly as before. There came, inevitably—surprising only
that he wag given so much grace—a collapse, in February
1878, So dangerous was his condition that as soon as he had
recovererd sufficiently to travel, he left England, accom-,
panied by his wife, for the Mediterranean. At Monte Gene-
roso, in Iialy, he appeared to improve. On strict orders his
work had heen left behind, but he wrote a few letters, which
even in their casual phrase carried his talent and dis, spirit.
In August 1878 he came home “‘looking very illédnd feeble
to ordinary observation, but much better to those who had
seen him before he started.” ** Before he bad a chance to
leave in the autumn, he suffered anoth f‘}_elal se, His condi-
tion was so hopeless that it was difﬁftﬁ%lfgr is Triehds to
understand ‘‘how he maintained, his cheerfulness, patience
and unselfishness.” ol
At the beginning of 1879 Glifford was fast losing strength.
Travel was dangerous, bng the English climate was worse.
It was certain he would\be more comfortable in the south,
and so, although hisfreénds feared he would not live through
the journey, he sgiled for Madeira.*® For some weeks after
his arrival therelwas a slight improvement—not enough to
warrant, hop@ybut enough to give him a few hours of peace
In the ﬁnsisﬁnshine. Knowing the end was coming, he gave

“ L E (P). s Tbid.
/% Alter Clifford had Jeft for Madeira, a number of his friends got together
to,pffer him a testimonial of their affection and admiration, The meeting is
described in Nature (February 13, 1878, Vol, XIX, p. 349): “The friends of
Professor Clifford, who has been compelled by ill health to relinquish active
work and reside in Madeira, are anxious to present him with a subatantial
testimonial in public recognition of his great scientific and literary attain-
ments. At a meeting held at the Royal Institution ... it was Tesolved that
& fund should be raised for the above-mentioned purpose, and that the sums
received should be placed in the hands of trustees for the benefit of Professor
Clifford and his family.” Among the signatories were Dr. William Spottis-
wood, president of the Royal Society, T. H. Huxley, Sir Frederick Pollack,
K. 1. 8. Smith, John Tyndall, Sir John Lubbock, Hon. Mr. Justice Stephen.
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careful directions for the disposal of his works. To the last
he retained interest in his friends and world affairs. On Marzh
3, 1879, aged thirty-five, he died.

“ And this,” writes Pollock, ‘‘is the witness of his ending,
that as never man loved life more, so never man feared death
less. He fulfiled well and truly that great saying of Spincza,
often in his mind and on his lips: ‘Homo Uiber de nulla re {
minus quam de morte cogitat.” "' ¥

XI

Clifford’s own writings, a few letters, Pollock’s biographi-
cal introduction to the Lectures and Essaydythe article by
Leslie Stephen, another friend, in the Diciprary of Naiional
Biography, the obituary notices,* and ‘a\'héndful of seattered
articles and reyipwarologifford’s books in the pages of
Nature, the Fortnightly Beview, qlgtd,o%her English magazines
—out of these meagre sourcegpall that were available, this
wholly inadequate appreciditon has been drawn. In the
histories and literature .6f mathematics there are tributes
abundant to Clifford’s powers as a mathematician,” powers

&7 “There is nothing X\er which a free man ponders less than death.”
{Bpinoza’s Eihies, P. YY) Prop. 67) L & E (P).

% Perhaps the hedtiknown of the obituaries is the one in the Athenzum of
March 8, 187% {tpétates in part: “Clifford was admitted on all hands to be
the most regmarkable mathematician of his generation, and promised to be a
gecond ey. His genera) acquirements, too, were singularly great.” Tt is
concedadhthat even if some of bis philosophics) articles “failed to convinee,”
they, \aly'\/ays “commanded atfention.”” “The continued strain of mathematical

4 study and metaphysical poleraic proved too severe for his physical powers. . . .
Qf his gentle, affeciionate disposition, his unaffected simplicity, and his
charm of manner, this is not the place to speak. To his friends his logs is almost
irreparable.’”” The cbituary in Noture of March 13 refers to Cliford as “One
of the deepest thinkers and most brilliant writers this century has seen.”
“He was,~some of hia friends may think uafortunately,—most generally
koown for his philosophical and polemical writings, [But his] fame will rest
on no such narrow basis,”

= Writing of the growth of non-Euclidean geometry in hig Vorlesungen fiber
die Eniwicklung der Mothematik im 19 Jahrhundert, the famous geometer Felix
Kiein camments on Clifford: “I remembier him with particulsr pleasure as one
who immediately fully understood me and, also, soon went beyond me.”
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embodied in his many papers, some of clarity and depth, ar-
tistically finished; others fragmentary, but rich with ideas.
No detailed critique of his mathematical contributions has
beerr atiempted, an appropriate task, rather, for a full
biograpby, lang overdue. Certainly in this study there is
nothing of novelty or originality. So far as Polloek’s bio-
graphical cssay is concerned, I admit to a shameless plagia-
rism: there was no alternative on consideration of the unighe
importance of the source. I might have reprinted Pollock’s
plece entire, bui not all was suited to the present pufpo'se
and it seemed preferable to devote more space maﬁ did he
to Clifford’s philosophy of science. The deb)thust be ac-
knowledged with the hope that as a resultyef my incurring
it the readsr will have come closer to Cliffoxd as he really was.

How The Common Sense of the ExaepSciences came to be
writter: s deseribed by Karl Pearscgidndhis Bibfate ¢retigined
in this voiutne) to the original edition. Clifford had ambitious
plans for writing a fresh serie§ of texts re-evaluating basic
concepts 1 mathematics an@ physics, but he lived to finish
no morc than the Elements of Dynamics and several chap-
ters of the present wa{fk. Sharing his views on the founda-
tions of science, (Pearson, a noted mathemafician and
geneticist, later‘a% author of the well-known Grammar of
Science, decidedas a tribute to Clifford to revise his manu-
seript and gomplete it by adding a large amount, of new ma-
terial. Tt 'in;y thus be supposed that the work presents Chif-
f0rd’§~,§<i§ments, more fully worked ocut, as he himself would
hayewished. Despite the measure of his contribution Pearson

~Detmitted the use of his name only in the form of initials

under the introdaction.

The task of collecting Clifford’s scattered notes and as-
sembling the crude manuseript was originally undertaken by
Professor R. C. Rowe, but at his death Pearson continued
the job.

To laud The Common Sense of the Exact Sciences would
be superfluous. Tt is known to every student of the physical
seiences; leading scientific works contain references and quo-
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tations; it is most often mentioned in writings on popuiar
science and the philosophy of science.” Like other great
books it is praised more often than read, a neglect partly
attributable to the fact that the volume has been so Jong
out of print.

Much of the book exhibits Clifford’s (and Pearson’s) ex-
traordinary virtuosity in the art of making hard thiigs(
seem easy. Throughout, one feels the impulsion, the inteliec:
tual range and vigour of Clifford’s spirit. But it is pot ah
easy book. It treats of ideas inherently subtle and difficult,
rendered more so by dogmatic preconceptions 4% o their
obvious and unanalysable character. In disséeting such
coneepts as space, number, motion, Clifford adopts the geo-
metric, intuitive method. Some concepts,\However, are im-
permeable to this approach, while others lend themselves
not merely mlahg}%%gpg%standing but to an unhampered
development only by the use of analytic instruments. The
enormous fruitfulness of the urion of algebra and geometry
must not be permitted to obseure the fact that algebra,® as
well as geometry, retains.autonomous functions; there are
paths that one can travel and the other cannot. Pure rea-
gon sometimes lights. the way where the lamp of intuition
wili not avail. That abstract transactions in symbols can
be translatediito the pictures of geometry and vice versa is
estheticallpyand intellectually satisfying. It demonstrates
the ger&ét;étﬁty, the interrelatedness, and the symmetry of

& The\étﬁenwum of July 11, 1885 In reviewing The Common Sense of the
Emci Sciences comments: “There is & marvellous charm about Clifford’s
,wfljs}r{g. He had a singular faculty of presenting diffieult truths in words of a
\startling clearness and brevity . . . [throughout] he eschews the ponderous
phrases of le_.a.rned pedantry. . . .7 P. G. Tait, in Nature (June 11, 1885}, con-
cludes that it is “in many respects & very good hook,” but his review fails to
conceal a pote of ssperity ay well as condescension. Tait, an eminent physicist,
had on at least one oeeasion fared poorly at Clifford’s hands: in CLhifford’s
smashing review of The Unseen Universe; or Physical Speculotions on a Fulure
State, a somewhat confused philosophical work of which Tait was eo-author.
The review, appearing in the Forinightly Review, was one of Clifford’s best-

k_nuwn polemics and, with its biting sarcasm and agnosticism, was not des-
tined to win friends. '

® The term here is used broadly to include analysis,
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‘mathematics; it gives to mathematics a concreteness em-
phasizing its connection with the physical world. While
these are valies not to be contemned, they must not be re-
garded as the touchstone of mathematical activity. The final
stamp of the Q.E.D. depends upon logic, not pictures.

Alihough Clifford’s exposition of the number concept is
an instance of his singular skill, the real number system. as\
developed since his time affords a more convineing .and
logica] structure. The greater portion of the chaptérsion
“Space,” ‘‘Position,” and ‘“Motion’’ are brilliant examples
of the didaetic art and have not been outmode@l Dy newer
methods. Wherever possible Clifford and _Pearson eschew
the algebraic symbol and egquation; ingrdimately complex
ideas, such as the bending of space, arpuitangled and their
elements laid bare with the aid of a pfose style, clean and of
measured pace, embodying the fifsiprbriplés-of sugdessful
teaching. Yet Pearson admitsethat to arrive at complete
understanding in certain patés of mathematics, or at least
an understanding sufficienfi$o permit of further advances, we
cannot depend on geO{n"etric conception alone:

+% 3

“Tt may be heldby some that the postulate of the sameness of
our space is based upon the fact that no one had hitherto been able
to form a-ny‘géo}netrical conception of space-curvature. Apart
from the fagt-that mankind habitually assumes many things of
which it ¢l form no geometrical coneeption {mathematicians the
circuldipoints at infinity, theologians transubstantiation), 1
mayremark that we cannot expect any being to form a geo-

“{flc\trical conception of the curvature of his space till he views it

from space of a higher dimension, that is, practically, never.”

The minor qualifications may frankly be admitied, for the
whole of the book forms a distinguished legacy of an out-
standing intellect. Modern advances in mathematics and
physics, advanees either superseding Clifford’s ideas or, more
often, following along paths he had charted to regions he had
prefigured, have been so extensive since The Common Sense
of the Exact Sciences appeared that one cannot but admire
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how fresh it remains in outlook, how little left behind by
another century.

1 have assumed few editorial prerogatives. Except for
modernization of some of the symbols, correction of obvious
misprints and errors, the addition of a number of diagrams,
and the redrawing of all, the text of the present edition of
The Common Sense of the Exact Sciences is taken unaltered
from the third edition of 1899. Alterations in the text itself
were never considered. Such notes as appear are inth'de'a to
elarify oceasional obscurities. \/

« \/

James R \Newman
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I Marcm 1879 Clifford died at Madeira, six years after-
wards a posthumous work is for the first time placed before
the public. Some explanation of this delay must be attempted N\
in the present preface. W

The original work as planned by Clifford was to*have
been entitled The First Principles of the M athematzcal
Sciences Explained to the Non-Mathematical, gnd to have
contained six chapters, on Number, Space, Quant@iy, Position,
Motion, and Mass respectively. Of the prolected work Clif-
ford in the vear 1875 diclated the cha gn Number and
Space completely, the first por tion. ord rauh parofl Quan-
tity, and somewhat later nearly the entire chapter on Motion.
The first two chapters were afterivards seen by him in proof,
but never finally revised. Shartly before his death he ex-
pressed a wish that the Qoolé should only be published after
very careful revigion, ar{d that its title should be changed to
The Common Sense of\the Exact Sciences.

Upon Clifford’s, %ath the labour of revision and eomple-
tion was entrusied to Mr. R. C. Rowe, then Professor of
Pure Mathefaafics at University College, London. That
Professar, Ro\v»e fully appreciated the difficulty and at the
[aIme tm}e the importance of the task he had undertaken is
very amply cvidenced by the time and care he devoted to the
,m%t%er Had he lived to complete the labour of editing, the
work as s whole would have undoubtedly been better and
more worthy of Clifford than it at present stands. On the
sad death of Professor Rowe, in October 1884, I was re-
quested by Messrs. Kegan Paul, Trench, & Co. to take up
the task of editing, thus left incomplete. It was with no
light heart, but with a grave sense of responsibility that I
undertook to see through the press the labour of two men
for whom I held the highest scientific admiration and per-
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sonal respect. The reader will perhaps appreciate my diffi-
culties better when 1 mention the exact state of the work
when it came into my bands. Chapters I and II, Space and
Number; half of Chapter II1, Quantity (then erroneousiy
termed Chapter 1V); and Chapter V, Motion, were in proof.
With these proofs I had only some half-dozen pages of the
corresponding manuscript, all the rest having unfortu-
nately been considered of no further use, and accordinghy(
destroyed. How far the contents of the later proofs ey
have represented what Clifford dictated I have had no RS
of ]udgmg except from the few pages of manuseripf it my
possession, In revising the proofs of the first two, chapters,

which Clifford himself had seen, I have made a@ little altera-

tion as possible, only adding an occasional fost-note where

it seemed necessary. N

After ex%{% |bhe-yeorkiras 1t Wasbiaced in my hands,
and consultmg Mors. Clifford, I came, to the conclusion that
the chapter on Quantity had heen misplaced, and that the
real gaps in the work were frote the middle of Chapter I1I
to Chapter V, and again at'the end of Chapter V. As to the
manner in which these gaps were to be filled I had no defi-
nite information whatever; only after my work had been
completed was an ‘early plan of Clifford’s for the book dis-
covered. It camé Yoo late to be of use, but it at least con-
firmed our rearrangement of the chapters.

For the/latter half of Chapter III and for the whole of
Chapter\IV (pp 134-204) I am alone responsible. Yet what-
ever, 't\hére is in them of value I owe to Clifford; whatever
ig feeble or obscure is my own.

“\'With Chapter V my task has been by no means light. It
was written at a time when Clifford was much occupied
with his theory of “Graphs,” and found it impossible to con-
centrate his mind on anything else: parts of it are clear and
succinet, parts were such as the author would never have
allowed to go to press. I felt it impossible to rewrite the
whole without depriving the work of its right to be called
Clifford’s, and yet at the same time it was absolutely neces-



Preface Ixv

sary to make considerable changes. Hence it is that my re-
vision of this chapter has been much more extensive than
in the case of the first two. With the result I fear many will
be dissaiisfied; they will, however, hardly be more con-
scious of its deficiencies than I am. I can but plead the condi-
tions under which I have had to work. One word more as
to this chapter. Without any notice of mass or force it seemed
impossible te close a discussion on motion; something I f:R
must be added. I have accordingly introduced 2 few (pages
on the laws of motion. I have since found that Clifford in-
tended to write a concluding chapter on mass.,/How to ex-
press the laws of motion in a form of which, Chiford would
have approved was indeed an insoluble riddle to me, because
I was unaware of his having written anything on the sub-
ject. I have accordingly expressedy dbiidibgirywithingreat
hesitation, my own views on the gub\gbct; these may be con-
cisely described as a strong desire’ to see the terms matter
and force, together with thefideas associated with them,
entirely removed from sciehtific terminology—to reduce, in
fact, all dynamic to kipématic. T should hardly have ven-
tured to put forward these views had I not recently dis-
covered that theythave (allowing for certain minor differ-
ences) the weighty authority of Professor Mach, of Prag.’
But since wrifing these pages I have also been referred to a
discourse delivered by Clifford at the Royal Institution in
1873, somaie account of which appeared in Neafure, June 10,
1830¢ herein it is stated that ‘“no mathematician can give
z}!{j{'meaning to the language about matter, force, inertia

o~used in current text-books of mechanics.” 2 This fragmentary
account of the discourse undoubtedly proves that Clifford
held on the categories of matter and force as clear and
original ideas as on all subjects of which he has treated; only,
alas! they have not been preserved.

! Bee his recent book, Die Mechanik in threr Entwickelung. Leipzig, 1883.

* Mr, R. Tucker, who has kindly searched Clifford’s note-books for any-
thing on the subject, sends me a slip of paper with the following words in
Clifford’s handwriting: “ Foree is not a fact at all, but an idea embodying what
iz approximately the fact.”
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In conclusion I must thank those friends who have been
ever ready with assistance and advice. Without their aid 1
could not have accomplished the littie that has been done. Iy
sole desire has been to give to the public as soon as possible
another work of one whose memory will be revered by all
who have felt the invigorating influence of his thought. Had
this work been published as a fragment, even as many of\
us wished, it would never have reached those for whom Gy’
ford had intended it. Completed by another hand, wé)an
only hope that it will perform some, if but a smallpart, of
the service which it would undoubtedly have £ulﬁ]led had
the master lived to put it forth. )

K. P

UNIVEBSI[’Y Corizer, LoNDON: Ky \\..
www (r:ﬁaraﬁ}%séary org.in \ ‘\

-

The third edition of this boﬁk 1s & reprint of the first,

with a few corrections, whlch Towe principally to the kind-
ness of readers. -

S K. P.
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CHAPTER I

Number

~\
§1. Number s Independent of the order of Countmg

TEE word which stands at the head of this chapter conmms
six [etters. In order to find out that there are sm, we count
them; » one, u two, m three, b four, ¢ five, jr six, In this
process we have taken the letters one by one) and have put
begide them six words which are the first si}i out of a series
of words that we always carry abgmmdmlghy aames of
numbers. After putting these six werds one to each of the
letters of the word number, we found that the last of the
words was s&x; and accordmgly‘ wre called that set of letters
by the name six. .

If we counted the Ietters in the word “chapter” in the
same way, we should fitd that the last of the numeral words
thus used would be §éven; and accordingly we say that there
are seven i.etters.\\

But now a ghestion arises. Let us suppose that the letters
of the word™iumber are printed upon separate small pieces
of wood hé\[bngmg {0 a box of letters; that we put these into
2 bag, @tl shake them up and bring them out, putting them
dowhMn any other order, and then count them again; we

_.shall still find that there are six of them. For example, if
N they come out in the alphabetical order b e m n r », and we
put to each of these one of the names of numbers that we
have before used, we shall still find that the last name will
be six. In the assertion that any group of things consists of
six things, it is implied that the word six will be the last of
the ordinal words used, in whatever order we take up this

! Clifford confines his discussion to cardinal numbers. Ordinel numbers

fequire a separate mathematical tregtment.—J.B. N,
3
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group of things to count them. That is to say, the number of
any set of things is the same in whalever order we count them.

Upon this fact, which we have observed with regard to
the particular number six, and which is true of all nuinbers
whatever, the whole of the science of number is hased. We

ghall now go on to examine some theorems about NUHHETS
which may be deduced from it.

N

§2. A Sum is Independent of the order of Addmg )

Suppose that we have two groups of things; say,theJetters
in the word “number,” and the letters in the word ‘‘chap-
ter.” We may count these groups separatelyy.and find that
they come respectively to the numbers six’and seven. We
may then put them all together, and &we find in this case
that the pugvegateagyoupiwhich if\se formed consists of
thirteen letters. \

Now this operation of puttingt

‘5

he things all togetner may
be conceived as taking placein two different ways. We may
first of all take the six things and put them in & heap, and
then we may add thg meven things to them one by one. The
process of countingyif 1% is performed in this order, amounts
to counting sevel,more ordinal words after the word six.
We may howe}zer take the seven things first and put them
into a heappand then add the six things one by one to them.
In this«case the process of counting amounts to counting six
morf,-.,gi inal words after the word seven,

A3ub from what we observed before, that if we count any
(%etof things we come to the same number in whatever order

we count them, it follows that the number we arrive at, as
belonging to the whole group of things, must be the same
whichever of these two processes we use. This number is
called the sum of the two numbers 6 and 7; and, as we have
seen, we may arrive at it either by the first process of adding
7 to 6, or by the second process of adding 6 to 7.

The process of adding 7 to 6 is denoted by a shorthand
gymbol, which was first used by Leonardo da Vinei. A little
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Maltese cross (+) stands for the Latin plus, or the English
increased by, Thus the words six increased by seven are written
in shorthiand 6 4+ 7. Now we have arrived at the result that
stz increased by seven is the same number as seven increased by
siz. To write this wholly in shorthand, we require a symbol
for the words, s the same number as. The symbol for thege,
is =; it was first used by an Fnglishman, Robert Recorde.
Our result then may be finally written in this way —< e,
6+7=7+46. A

The proposition which we have written in his symbolic
form states that the sum of two numbers\gsand 7 is inde-
pendent of the order in which they are added together. But
this remark which we have made about’tWo particular num-
bers is equally true of any two nuwgmbe\#nwhubememig-iwonse-
quence of our fundamental assuription that the number of
things in any group is independent of the order in which we
count them. For by the sqm' of any two numbers we mean
& number which is arrived at by taking a group of things
containing the first nimber of individuals, and adding to
them one by one ahgther group of things containing the
gecond number oP\individuaIs; or, if we like, by taking a
group of things)¢entaining the second number of individuals,
and adding toythem one by one the group of things contain-
mg the fisdt” number of individuals. Now, in virtue of our
funda{a}ntal assumption, the results of these two opera-
tions\hust be the same. Thus we have a right to say, not
Jaiily that 6 + 7 = 7 + 6, but also that 5 + 13 = 13 + 5, and
\g0 on, whatever two numbers we like to take.

This we may represent by a method which is due to Vieta,
viz,, by denoting each number by a letter of the alphabet.
If we write a in place of the first number in either of these
two cases, or in any other case, and b in place of the second
number, then our formula will stand thus:—

e+b=5b+aq.

By means of this representation we have made 2 state-
ment which is not about two numbers in particular, but
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about all numbers whatever. The letters ¢ and b so used are
something like the names which we give to things, for ex-
araple, the name horse. When we say a horse has four legs,
the statement will do for any particular horse whatever. It
says of that particular horse that it has four legs. If we said
““a horse has as many legs as an ass,”” we should not be
speaking of any particular horse or of any particular ass,
but of any horse whatever and of any ass whatever. Just
in the same way, when we assert that a + b = b + o, we'are
not speaking of any two particular numbers, but of Alb nam-
bers whatever, e\

We may extend this rule to more numbers than two. Sup-
pose we add to the sum ¢ + b a third numiber, ¢, then we
shall have an aggregate group of things svhtich is formed by
putting togather three gzomps, and thewumber of the aggre-
gate group is got by adding togethér the numbers of the
three separate groups. This number, in virtue of our funda-
mental assumption, is the samfle in whatever order we add
the three groups together, because it is always the same set
of things that is counted,"Whether we take the group of @
things first, and then @dd the group of b things to it one by
one, and then to Qtﬁ compound group of a + b things add
the group of ¢ thihgs one by one; or whether we take the
group of ¢ thi}fgs, and add to it the group of b things, and
then to thé/eompound group of ¢ + b things add the group
of ¢ thi?{g’s,’the sum must in both cases he the same. We may
Wrii'fe}i.;hls result in the symbolic forma+b4+¢c=c+ b+ a,
or'we may state in words that the sum of three numbers is

Cindependent of the order in which they are added together.

This rule may be extended to the case of any number of
nurbers.! However many groups of things we have, if we
put them all together, the number of things in the resulting
aggrega'te group may be counted in various ways. We may
start with counting any one of the original groﬁps, then we
may follow it with any one of the others, following these by

1'To the cage of any finite rumber of numbers. For an infinite number of
nurnbers {e.g., infinite series) the rule 85 stated would not be correct.—J.R.N.
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any one of those left, and so on. In whatever order we have
taken these groups, the ultimate process is that of counting
the whole aggregate group of things; and consequently the
numbers that we arrive at in these different ways must all
be the same.

§3. A Product is Independent of the order of M ultipZyinQ\

Now let us suppose that we take six groups of thlhgs
which ail contain the same number, say 5, and that we want
to count the aggregate group which is made by~putt1ng all
these together. We may count the six groups(of five things
one after another, which amounts to the satne thing as add-
ing 5 five times over to 5. Or if we like w® may simply mix
up the whole of the six groups, an&\eount them without
reference to their previous groupisigBitaitilisaconvsivent
in this case to consider the six Lroups of five things as ar-
ranged in a particular way. %

Let us suppose that alls these things are dots which are
made upon paper, that every group of five things is five dots
arranged in a horiz ntal line, and that the six groups are
placed vertically uqsie'r one another as in Figure 1.

00'..0.
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A\ ° ] [ ] | ] ®
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® & o & @
6 X5 = 5 X6
Fia. 1

We then have the whole of the dots of these six groups
arranged in the form of an oblong which contains six rows
of five dots cach. Under each of the five dots belonging to
the top group there are five other dots belonging to the re-
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maining groups; that is to say, we have not only six rows
containing five dots each, but five columns containing six
dots each. Thus the whole set of dots can be arranged in five
groups of six each, just as well as in six groups of five each.
The whole number of things contained in six groups of five
each, is called six times five. We learn in this way therefore
that six times five is the same number as five times suu’ o

As before, the remark that we have here made aboyi two
particular numbers may be extended to the case of any)two
numbers whatever. If we take any number of groups\ of dots,
containing all of them the same number of dots{ ind arrange
these as horizontal lines one under the other,(then the dots
will be arranged not only in lines but itvedlwmns; and the
number of dots in every column will oh¥wiously be the same
as the number of groups, while theainber of eolumnns will
be equal to the number of dots ineach group. Consequently
the nuntbsetbsf BHREYY N & 'Eroups-of b things each is equal to
the number of things in b gréups of a things each, no matter
what the numbers e and B are.

The number of things th a groups of b things each is called
a times b; and we learn in this way that o times b is equal to
b times a. The S\iﬁmber a times b is denoted by writing the
two letters a and'b together, ¢ coming first; so that we may
express ourdresult in the symbolie form ab = ba.

Suppoge.now that we put together seven such compound

grou%za;:ranged in the form of an oblong like that we con-
strebed just now. They cannot now be represented on one

‘.S.h.éet of paper, but we may suppose that instead of dots we
~ have little cubes which can be put into an oblong box (Fig. 2).

On the floor of the box we shall have six rows of five cubes
each, or five columns of six cubes each; and there will be

* This definition of multiplication is based on the concept of addition alone.
The modern definition uses two concepts: combination and sddition, The
number 5, say, is represented by a set consisting of five elemonts; the num-
ber 6 by a set consisting of six elerents, “The product 5 times 6 is represented
by a new set, each clement of whieh is a4 combination of two elements, one

:from each of the original sets. The elements of the new set are then counted
in the wsual way.—JLR.N.
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seven such layers, one on the top of another. Uponl every
cube {herefore which is in the bottom of the box there will be
a pile of six cubes, and we shall have altogether five times six
suct: piles, That is to say, we have five tinies six groups of
seven cubes each, as well as sevgn \gﬁ%{;?shgf ﬁvgrn}nes sIx
cubes each. The whole number of cubes 18 1ndyepencfent of
the order in which they are counted, and consequently we
may say that seven times five 'trmes six is the same thing as
five times six times seven. &%

But it is here very impdrtant to notice that when we say
seven times five time§\six, what we mean is that seven
layers have been forn}ed each of which contains five times
gix things; but w‘hén we say five times six times seven, we
meszn that five umes six columns have been formed, each of
whieh contaiis seven things. Here it is clear that in the one
case wehgﬁé first multiplied the last two numbers, and then
multlp‘\hed the result by the first mentioned (seven times five
timgs'six = seven times thirty), while in the other case if; is
mth‘e first two numbers mentioned that are multiplied together
and then the third multiplied by the result (five times six
times seven = thirty times seven). Now it is quite evident
that when the box is full of these cubes it may be set upon
any side or upon any end; and in all cases there will be &
number of layers of cubes, cither 5 or 6 or 7. And whatever
is the number of layers of cubes, that will also be the number
of cubes in each pile. Whether therefore we take seven layers
containing five times six cubes each, or six layers containing
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seven times five cubes each, or five layers containing. 5i%
times seven cubes each, it comes to exactly the same thing.
We may denote five times six by the symbol 5 x 6, and
then we may write five times six times seven, 5 X 6 X 7.
But now this form does not tell us whether we are to moul-
tiply together 6 and 7 first, and then take 5 times the result,
or whethe? we are to multiply 5 and 6 first, and take thab
number of sevens, The distinction between these two opefas
tions may be pointed out by means of parentheses or lrgek-
ets; thus, 5 X (6 X 7) means that the 6 and 7 must.be first
multiplied together and 5 times the result taken, while
(5 % 6) X 7 means that we are to multiply §.a0d"6 and then
take the resulting number of sevens,

We may now state two facts that we.liﬁv’e learned about
multiplication. \ )

Fhsg}}gﬁgbphﬁimm-mke ngz_differenee in the res\ﬂtr
although they do make a differenie in the process by which
the result is attained; thatis tasay, 5 X (6 X 7) = (5 X 6) X 7.

Secondly, that the productiof these three numbers is inde-
pendent of the order in Mhich they are multiplied together.

The first of these sfatements is called the associative law
of multiplicationand' the second the commutative law.

Now these remarks that we have made about the result
of multiplying\together the particular three numbers, 5, 6,
and 7, a.lje;ehually applicable to any three numbers what-
ever. L\

Welay always suppose a box to be made whose height,
lerigth, and breadth will hold any three numbers of cubes.

\In that case the whole number of cubes will elearly be inde-
pendent of the position of the box; but however the box is
set down it will contain & certain nuraber of layers, each
layer ‘containing a certain number of rows, and each row
containing a certain number of cubes. The whole number
of eubes in the box will then be the produect of these three
numbers; and it will be got at by taking any two of the three
numbers, multiplying them together, and then multiplying

the result by the third number.,
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‘This property of any three numbers whatever may now
be stated symbolically.

In the first place it is true that a{be) = (ab)c; that is, it
comes to the same thing whether we multiply the product

of the second and third numbers by the first, or the third
number by the product of the first and second.

In the next place it is true that abe = ach = bea, &e., and
we may say that the product of any three numbers ig mde-
pendent of the order and of the mode of groupmg in) which
the multiplications are perfermed.

We have thus made some similar sta.tements about two
numbers and three numbers respectively. THS naturally sug-
gests to us that we should inquire if ({)rrespondmg state-
ments can be made about four or five mumbers, and so on.

‘We have arrived at these two sbé¥ éﬂﬂsbb?beamidenng
the whole group of things to be® (edunted as arranged in a
layer and in a box respectivelyniCan we go any further, and
50 arrange a number of box‘eé ‘as to exhibit in this way the
product of four numbers? It is pretty clear that we cannot.

Let us therefore now'see if we can find any other sort of
reason for be]ievmg\that what we have seen to be true in the
case of three numbers—viz., that the result of mulfiplying
them togethqgls mdependent of the order of multiplying—
is also true.offour or more numbers.

In therfirst place we will show that it is possible to inter-
changg\the order of a pair of these numbers which are next
to one another in the process of multiplying, without alter-
Vs mg Jthe product.

" Consider, for example, the product of four numbers, abed.
We will endeavour to show that this is the same thing as the
product acbd. The symbol abed means that we are to take ¢
groups of d things and then b groups like the aggregate so
formed, and then finally a groups of bed things.

Now, by what we have already proved, b groups of cd
things come to the same number as ¢ groups of bd things.
Consequently, a groups of bed things are the same as a groups
of cbd things; that is to say, abed = achd.
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Tt will be quite clear that this reasoning will hold no mat-
ter how many letters come after d. Suppose, for example,
that we have a product of six numbers abedef. This mcans
that we are to multiply f by e, the result by d, then dsf by ¢,
and so on.

Now in this case the product def simply takes the place ,
which the number d had before. And & groups of ¢ times def
things come to the same number as ¢ groups of b timesdef
things, for this is only the product of three pumbershb, ¢,
and def. Since then this result is the same in whateyey order
b and ¢ are written, there can he no alteration made by mul
tiplications coming after, that is to say if we hawe to multiply
by ever so many more numbers afier mulfiplying by a. It
follows therefore that no matter howdany numbers are
multiplied together, we may change the'places of any two of
them wiichH:% Sosetogether without altering the product.

In the next place let us pro¥e’that we may change the
places of any two which are not'close together. For example,
that abedef is the same thing as aecdbf, where b and ¢ have
been interchanged. Welniay do this by first making the ¢
march backwards, ¢hanging places successively with d and
¢ and b, when the\product is changed into aebedf; and then
making b marchforwards so as to change places successively
with ¢ and d, whereby we have now got ¢ into the place of b.

Lastl;g}:‘say that by such interchanges as these we can
produegany alteration in the order that we like. Suppose
for.gxample that T want to change abedef into defbea. Here I

owillfirst get d to the beginning: I therefore interchange it
with a, producing dbeaef. Next, I maust get ¢ second;; I do this
by interchanging it with b, this gives dcbaef. I must now put
{ third by interchanging it with b, giving defaeb, next put b
fourth by interchanging it with ¢, producing dcfbea. This is
the form required. By five such interchanges at most, I can
alter the order of six letters in any way I please. It has now
been proved that this alteration in the order may be pro-
duced by successive interchanges of two letters which are
close together. But these interchanges, as we have before
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shown, do not alter the product; consequently the product
of six numbers in any order is equal to the produet of the
same six numbers in any other order; and it is easy to see
how the same process will apply to any number of numbers,

But is not all this a great deal of trouble for the sake of
proving what we might have guessed beforehand? It 1s frue
we nilght have guessed beforchand that a product was inde-
pendent of the order and grouping of its factors; and we might
have done good work by developing the consequences ‘ofythis
guess hefore we were quite sure that it was true. Mahy beauti-
ful theorems have been guessed and widely used™hefore they
were conciusively proved; there are some cyell now in that
state. But at some time or other the inquiry has to be under-
taken, and 1t always clears up our 1dea§ about the nature of
the theorem, besides giving us the r fit to say that it is true.
And this iz not all; for in most case;ila@mmﬂ( gxaga@egjiﬁ]proof
or of investigation can be apphcd~to other subjects in such a
way as to increase our knowledge This happens with the
prool we have just gone through but at present, as we have
only numbers to deal ~w1th we can only go backwards and
not forwards in 1tS\apphcat10n We have been reasomng
about multiplication; let us see if the same reasoning can
be applied to addition.

What we #ave proved amounts to this. A certain result
hag heengot’out of certain things by taking them in a definite
order; &nd it has been shown that ¢f we can interchange any
two £omsecutive things without altering the resull, then we may
ma!‘e any change whatever in the order without allering the
4 \Tesulz’, Let us apply this to counting. The process of counting
"consists in taking certain things in a definite order, and ap-
plying them to our fingers one by onc; the result depends on
the last finger, and its name is ealled the number of the
things so counted. We learn then that this result will be in-
dependent of the order of counting, provided only that it
remains unaltered when we intcrchange any two consecutive
things; that is, provided that two adjacent fingers can be
crossed, so that each rests on the object previously under



/N
\;

14 CuapTeEr I : NuMBER

the otber, without employing any new fingers or setting {ree
any that are already employed. With this assumption we
can prove that the number of any set of things is independent
of the order of eounting; a statement which, as we have seen,
is the foundation of the science of number.

84. The Disiributive Law \

There is another law of multiplication whieh is, if pp\'sfsime,
still more important than the two we have ah:qady con-
sidered. Here is a particular case of it: the numben 5 is the
sum of 2 and 3, and 4 times 5 is the sum of 4(times 2 and 4
times 3. We can make this visible by an artangement of dots

a8 follows (Fig. 3):— RN
* 9 . sle
www.dbraulibrd®y g i ’. - e
® o .o . o
o ol e s ®
~”,< Fic. 3

Here we have follr \vows of five dots each, and each row is
divided into twio)parts, containing respectively two dots and
three dots. }4d clear that the whole number of dots may be
counted ifieither of two ways; as four rows of five dots, or
as fou(?dﬁvs of two dots together with four rows of three

doigs.;'j?.y our general prineiple the result is independent of
thevorder of counting, and therefore

4X 5= (4X2) + (4% 3);
or, if we put in evidence that 5 = 2 + 3,

42+ 3) = (4 X 2 + (4 x 3).

The process is clearly applicable to any three numbers
whatever, and not only to the particular numbers 4, 2, 3.
We may construct an oblong containing a rows of b -+ ¢ dots;
and this may be divided by a vertical line into g rows of b
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dets and @ rows of ¢ dots. Counted in one way, the whole
numhber of dots 18 @ (B 4 ¢); counted in another way, it is
ab + ac. Henee we must always have

alb + c} = ab + ac.

This is the first form of the distributive law.
Now the result of multiplication is independent of thes
order of the factors, and therefore

O\
alb+¢) =B+ ca, N\ ¢
ab = ba, ~\ N
ac = ca; e\

¥4
N\

s0 that our equation may be written in the far\m
(b+cla=ba+ca.,
This is ealled the second form of thel distb 1but1vc law Usmg

the numbers of our previous ehamg‘gwwelggg} Nat Sifce 5 is
the sum of 2 and 3, 5 times 4_is\the sum of 2 times 4 and 3
times 4. This form may bel m‘nved at independently and
very simply as follows. We know that 2 things and 3 things
make § things, v;hatever the things are; let each of these
things be a group o&{ things; then 2 fours and 3 fours make
8 fours, or
) (2><4)+(3><4) =5 X4

The rules ﬁiﬁy now be extended. It is clear that our oblong
may bO\QLVIded by vertical lines into more parts than two,
and Uflat the same reasoning will apply. This figure (Fig. 4),

~ } e o ¢ ¢ 0 * e
Y% o o o o o * o o o
o e e o @ e @ o9
* @ s o @ e o & o
Fiz. 4

for examiple, makes visible the fact that just as 2 and 3 and 4
Ir}ake 9, s0 4 times 2, and 4 times 3, and 4 times 4 make 4
times 9. Or generally—
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a{b+c+d) = ab -+ ac + ad,
{b+ ¢+ d)a = ba+ca+ da;

and the same reasoning applies to the addition of any num-
ber of numbers and their subsequent multiplication.

§5. On Powers ~

When a number is multiplied by itself it is said & be
squared. The reason of this is that if we arrange & Btunber
of lines of equally distant dots in an oblong, thesatimber of
lines being equal to the number of dots in eactdline, the ob-
long will become a square. O

If the square of a number is multiplied by the number
itself, the number is said to be cubedybceause if we can so
ill & box with cubes as to have thg8ame number of them in
its heigk{l&wl_(éggécaib%ggbpgg,dt’l}? ‘tHe shape of the box itself
must bé 4 cube. &N

If we multiply together four numbers which are all equal,
we get what is called thefourth power of any one of them;
thus if we multiply 478’5 we get 81, if we multiply 4 2's we
get 16, &\J

If we multipl}\cogether any number of equal numbers,
we get in the'same way a power of one of them which is
called its ﬁit‘\h, or sixth, or seventh power, and so on, accord-
ing to the'number of numbers multiplied together.

ﬂ&e"is a table of the powers of 2 and 3:—

\’ Index 1 2 3 24 5 # 7 -1
~O Powersof2 , . .2 4 8 16 32 64 128 256
\ ) “ 3...8 9 27 8 243 729 2187 6561

The number of equal factors multiplied together is called
the sndex, and it is written as a small figure above the line
on the right-hand side of the number whose power is thus
expressed. To write in shorthand the statement that if you

multiply seven threes together you get 2187, it is only need-
ful to put down:—

37 = 2187,
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"1t is to be observed that every number is its own first
power; thus 2' = 2, 3! = 3, and in general ¢! = a.

§6. Square of a + 1

We may illustrate the properties of square numbers by
means of a common arithmetical puzzle, in which one per-
son tclis the number another has thought of by meangef
the result of a round of caleulations performed with ity

Think of a number . . . . . . . . . say&g"’
Sguare it . . . .Y 9
Add 1 to the or1g1nal number . . . o0 4
Square that . . . R\ \\ . 16
Take the difference of the two squares A

This last is always an odd AUl ieY sifimber

thought of is what we may call $he less half of it; viz., it is
the half of the even number next "below it. Thus, the result
being given as 7, we know thaﬁ the number thought of was
the haif of 6, or 3. A\

We will now proceed s prove this rule. Suppose that the
square of 5 is gwen\us in the form of twenty-five dots ar-
ranged in a squdre,how are we to form the square of 6 from
it? We may add five dots on the right, and then five dots
along the sbigttomn, and then one dot extra in the corner.
That is, mget the square of 6 from the square of 5, we must
add &Qe\more than twice 5 to it. Accordingly—

36 =25+ 10+ 1.

And conversely, the number 5 is the Jess half of the dif-
ference between its square and the square of 6.

The form of this reasoning shows that it holds good for
any number whatever. Having given a square of dots, we
can make it into a square having one more dot in each side
by adding a column of dots on the right, a row of dots at the
bottom, and one more dot in the corner (Fig. 5). That is, we
must add one more than twice the number of dots in a side
of the original square. If, therefore, this number is given to
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us, we have only to take one from it and divide by 2, to have
the number of dots in the side of the ortginal square.

We will now write down this resplt <4n shorthand. Let @ be
the or@mphﬁfﬂwgfr%ﬁeg a + 1 8 the number next above
it; and what we want to say is t,’hat the square of @ + 1, that
is (a + 1)% is got from the square of a, which is a?, by add-

ing to it one more than tWice a, that iz 2¢ 4- 1. Thus the
shorthand expression ial

@T—r 1) = g2+ 2a+ 1.

This theoremiNs & particular case of a more general one,
which enablesnis to find the square of the sum of any two
numbers jt\ferms of the squares of the two numbers and
their gaociuct We will first illustrate this by means of the

squa f 5, which is the sum of 2 and 3 (Fig. 6).
\»\ J e o o »
[ ] [ ]
e @ * @
'S . . 0
* & L] L ]

Fa. 6
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The square of twenty-five dots is here divided into two
squares and two oblongs. The squares are respectively the
squares of 3 and 2, and each oblong is the product of 3 and 2.
In order to make the square of 3 into the square of 3 + 2,
we raust add two columns on the right, two rows at the bot-
tom, and then the square of 2 in the corner. And i in fact
25=9+2x6+4.

£ )\
7 AN

§7. On Powers of a + b O
To generahze this, suppose that we have :’a: square with
a dots in each side, and we want to increase 1t to a square
with & + b dots in each side. We must add b columns on the
right, b rows at the bottom, and themdhe square of b in the
corner. But each column and eachzep.containg:a.dotss Hence
what we have to add is twme ab together with b2, or in
shorthand :—
(a—H’;)2 2 a5+ 2ab + b2

The thecrem we prex{;ously arrived at may be got from this
by making & = 1. N
Now this is QI\ute completely and satisfactorily proved;
nevertheless we,are going to prove it again in another way.
The reason, i€/ that we want to extend the proposition stiil
further; we-want to find an expression not only for the square
of (@£3), but for any other power of it, in terms of the
pOWBT‘S and produets of powers of ¢ and b. And for this pur-
POSe the mode of proof we have hitherto adopted is unsuit-
sable We Imght it is true, find the cube of a + b by adding
‘the proper pieces to the cube of a; but this would be some-
what cumbrous, while for higher powers no such representa-
tion can be used. The proof to which we now proceed de-
pends on the distributive law of multiplication.
According to this law, in fact, we have

(@a+b)2=(@a+b(a+b)=ala+Dd)+bla+b)
= aa + ab + ba + bb
= g+ 2ab + b
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1t will be instructive to write out this shorthand at length.
The square of the sum of two numbers means that swm mul-
tiplied by itself. But this product is the first number roulti-
plied by the sum together with the second number muitiplied
by the sum. Now the first number multiplied by the sum is
the same as the first number multiplied by itself together
with the first number multiplied by the second number.
And the second number multiplied by the sum is the shihe
as the second number multiplied by the first numpéhto-
gether with the second number multiplied by itself (Futting
all these together, we find that the square of the sum is
equal to the sum of the squares of the {two numbers together
with twice their produet. O

Two things may be observed on this‘\¢emparison. Iirst,
how very réqu_%l&“ l}%l%l}&;%mnd expresdion gains in clearness
from 1t$ brevity. Secondly, that‘it.'}is only shorthand for
something which is just straightferward common sense and
nothing else. We may alwaysdepend upon it that algebra,
which cannot be translatediinto good English and sound
common sense, is bad algebra.

But now let us putithis process into a graphical shape
which will enable us to extend it. We start with two num-
bers, a and b, ana\we are to muitiply each of them by a and
also by b, anEI $0 add all the resuits.

2 ': s\" a + b
N \
. \ § L1 A 7.3 ab/\:};

NN Fra. 7

Let us put in each case the result of multiplying by « to the
left, and the result of multiplying by b to the right, under
the number multiplied. The process is then shown in the
figure.

If we now want to multiply this by a + b again, so as to

make (a + b)?, we must multiply each part of the lower line
by a, and also by b, and add all the results, thus:-—
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@ + 5\
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cae lae aba aal  bub alh bbb
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Here we have eight terms in the result. The first and last
are 2* and B respectively. Of the remaining six, three are\
baa, abe, gab, containing two a’s and one b, and therefore
each cqual to a%; and three are bba, bab, abb, containing ‘orle
a and two b's, and therefore each equal to ab’ Thus we

have:— {
(a + b)® = a® + 3a% + 3ab® + b“.w\x

For exarnple, 11* = 1331. Here ¢ = 10, b & 1' and
(104 1)* = 10° + 3 X 102 & ><10+

w dbraulibr ary org.in

for it is clear that any power of 1 131
We shall carry this process qne step further, before making
remarks which will enable ys “to dispense with it.
In this casc there are sixteen terms, the first and last being
a* and b* respectively.“Q’f the rest, some have three a’s and
\\ + >

%3 b

TN ‘/\ AN N

cea ank brh ads hibb

N

/ NN AN
aena faaa ‘bx b.;rm agha babr  adde \;'}Lba aaﬁ baab ebad bheb  wabl babd  obdl BhEb
\

F15. 9

Utl&\b some two a's and two b’s, and some one e and three
\6 §&. There are four of the first klnd since the b may come
first, sccond, third, or fourth; so also there are four of the
th1rd kind, for the ¢ occurs in cach of the same four places;
the remaining six are of the second kind. Thus we find that,

(@ +b)* = at + 4a%b + 6a%* + 4ab® + b

We might go on with this process as long as we liked, and
we should get continually larger and larger trees. But it is
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easy to see that the process of classifying and counting the

terms in the last kne would become very troublesome. Let

us then try to save that trouble by making some remiarks
upon the proeess.

If we go down the tree last figured, from a to aban, we
shall find that the term aebaa is built up from right to left
as we descend. The a that we begin with is the last letter of
abaa; then in descending we move to the right, and ‘pub
another a before it ; then we move to the left and put  before
that; lastly we move to the right and put in the firsta From
this there are two conclusions to be drawn, \*

First, the terms at the end are all different; fo5*any diver-
gence in the path by which we descend thedree makes a dif-
ference in some letter of the result. \

Secondly, every possible armngemgt%f four letters which
are either a's or b’s is produced. Forifany such arrangement
be Writ‘ﬁé'flwt‘ilg?ﬂ,h%%ﬁd%a%fﬁwq Rave onﬁyy to read if back-
‘wards, making o mean “turattc the left” and b “turn to
the right,” and it will indiegte the path by which we must
descend the tree to find $83t arrangement at the end.

We may put thesetwo remarks into one by saying that
every such possibl{&:aﬂangemeni s produced once and once
only. <

Now the problem before us was to count the number of
terms whichhave a certain number of b’s in them. By the
remark,jghs% made we have shown that this is the same thing
as to\\e;mint the number of possible arrangements having that
nymber of &’s.

.. Consider for example the terms containing one b. When
) there are three letters to each term, the number of possible
arrangerents 1s 3, for the b may be first, second, or third,
baa, aba, aab. So when there are four letters the number 18 4,
for the b may be first, second, third, or fourth; baaa, abaea,
aaba, acab. And generally it is clear that whatever be the
number of letters in each term, that is also the number of
places in which the & ean stand. Or, to state the same thing
in shorthand, if n be the number of letters, there are # terms
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containing one b, And then, of course, there are n terms con-
taining one a and all the rest b’s.

And these are the terms which come at the beginning and
end of the nth power of ¢ + b; viz. we must have (g 4 B
= ¢" 4+ na* b + other terms -+ nab™ ! 4 b,

The meaning of this shorthand is that we have n (a + 5)’s
multiplied together, and that the result of that multiplging
15 the sum of several numbers, four of which we have F{itten
down. The first is the product of » «’s multiplied-tegether,
or a¢”; the next is n times the product of b bygﬁ — 1) a’s,
namely, ra*"'h, The last but one is n fimes thesproduct of ¢
by {n — 1) b’s, namely, nab*; and the lagtis‘the product of
n b’s multiplied together, which is writbén'b=,

The problem that remains is to fillup this statement by
finding what the “‘other terms”, ”\é}fé <onehinmy - e more
than one a and more than one &

),’
*3

§8. On the Number of A};ﬁmgements of a Group of Lelters

This problem be]&'ygs to a very useful branch of applied
arithmetic ealle { 3 theory of “ permutations and combina-
tions,” or of grrangement and selection. The theory tells us
how many: arrangements may be made with a given set of
things, and) ‘how many selections ean be made from them,
One ofthese questions is made to depend on the other, so
thaty Q}lere is an advantage in counting the number of ar-
I‘ahgcments first.

J With two letters there are clearly two arrangements, ab
and ba. With three letters there are these sixi—

abe, ach, beq, bace, cab, cba,

namely, two with a at the beginning, two with b at the be-
ginning, and two with ¢ at the beginning; three times two.
It would not be much trouble to write down all the arrange-
ments that can be made with four letters abed. But we may
count the number of them without taking that trouble; for
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if we write d before each of the six arrangements ol abe, we
shall have six arrangements of the four letters beginning
with d, and these are clearly all the arrangements which ean
begin with d. Similarly, there must be six beginning with a,
six beginning with b, and six beginning with ¢; in all, {our

times six, or twenty-four.
Let us put these results together: ',\\
With twa letters, number of arrangements is two@ "2
“  three three times two . . . {™N\= 6
“ four four times three tlmqs Pwo = 24

Here we have at once a rule suggested. T ﬁnd the number
of arrangements which can be made with q-given group of letiers,
multiply logether the numbers two, thréls, four, &c., up to the
number, of Jelgranmheygnaip. We Have found this rule to be
right for two, three, and four letters is it right for any num-
ber whatever of letters?

We will consider the néxt ecase of five letters, and deal
with it by a method whith is applicable to all cases. Any one
of the five letters may be placed first ; there are then five
ways of disposing*of the first place. For each of these ways
there are four ways of disposing of the second place; namely,
any one of Mo’ remaining four letiers may bhe put second.
This makesxﬁve times four ways of disposing of the first two
places\ Eor each of these there are three ways of disposing
of the\t ird place, for any one of the remaining three letters
may be put third. This makes five times four times three
“ways of disposing of the first three places. For each of these

there are two ways of disposing of the last two places; in all,
five times four times three times two, or 120 ways of arrang-
ing the five letters,

Now this method of counting the arrangements will
clearly do for any number whatever of letters; so that our
rule must be right for all numbers.

We may state it in shorthand thus: the number of ar-
rangements of # letters is 1 X2x3X...x n; or puttlng
dots instead of the sign of mutitiplication, 1t i81.2.3.
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The 1 which begins is of course not wanted for the multi-
plication, but it is put in to include the extreme case of there
being only one letter, in which case, of course, there is only
one arrangement,

The product 1 -2 - 3. .., or, as we may say, the product
of the first » natural numbers, occurs very often in the exact
sciences. It has therefore been found convenient to have a
special short sign for it, just as a parliamentary reporters
has a special sign for ““the remarks which the Honourable
Member has thought fit to make.”” Different mathematiciazs,
however, have used different symbols for it. The symbol [n
is very much used in England, but it is difficul§ te print.
Some continental writers have used a note of @dmiration,
thus, n1* We may now state that— ’

11-1,21=2,3! =6, 4! = 24,5] &M064-5 420,
and generally that N »
(n+ 1)1 = (D!
for the product of the first j{bﬁ%’—’i numbers is equal to the
product of the first n numpexs mulitiplied by n 4 1.

K
§9. On a Thet{qm’conceming any Power of a + b

We will now_&pply this rule to the problem of counting
the terms in X&'+ b)7; and for clearness’ sake, as usual, we
will begin with a particular case, namely the case in which
n = 5. Weknow that here there is one term whose factors
are 3@11;.‘@}'\5, and one whose factors are all d’s; five terms which
aret.hé product of four a’s by one b, and five which are the
{product of one a and four b’s. It remains only to count the
number of terms made by multiplying three a’s by two ’s,
which is naturally equal to the number made by multiplying

1 In the original text Clilford used the symbol i, which he justified as fol-
lows: “I myself prefer a symbol which has the weighty authority of Gauss,

namely a Greek TI (Pi), which may be taken as short for product if we like,
thus, &

In this edition the symbol ! (factorizl) has been used, following modem
usage.~—J R.N.
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two a’s by three b's. The question is, therefore, how many dif-
ferent arrangements can be made with three a’s and two 1s?
Here the three o’s are all alike, and the two b's are alike.
To solve the problem we shall have to think of them as dif-
ferent; let us therefore replace them for the present by eapi-
tal letters and small ones. How many different arrangenients

can be made with three capital letters A B C and two small,

ones de?

In this question the capital letters are to be consigéred
as equivalent to each other, and the small letters as egiva-
lent to each other; so that the arrangement A B Cdw tounts
for the some arrangement as C A B e d. Every \aifrangement
of capitals and smalls is one of a group of 6 2= 12 equiva-
lent arrangements; for the 3 capitals may l\eaarranged among
one another in 3! = 6 ways, and the 2 smé&lls may be arranged
in 2! = 2 ways, Nowitiscelear that by taking all the arrange-
ments in respect of capital and sm:all letters, and then per-
muting the capitals among t-h{m{s'elves and the small letters
among themselves, we shalliget the whole number of ar-
rangements of the five lettérs A B C d ¢; namely 51 or 120.
But since each arrangesient in respect of capitals and smalls
is here repeated tw.ewe times, and since 12 goes into 120 fen
times exactly, it aﬁears that the number we require is tem.
Or the numbeyof arrangements of three o’s and two b's is
51 divided b 8T and 21.

The arrangements are in fact—

SO bbaaa, babaa, baaba, baaab
A abbaa, ababa, abaab
W™ achba, aabab

aaabb

'Ijh_e first line has a b at the beginning, and there are four
positions for the second b; the next line has a b in the second
place, and there are three new positions for the other b, and
80 on. We nﬁght of course have arrived at the number of ar-
rangements in this particular case by the far simpler process
of direct counting, which we have used as a verification ; but
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the advantage of our longer process is that it will give us a
general formula applicable to all cases whatever.

Let us stop to put on record the result just obtained; viz.
we have found that

{a + b)® = a® + 5a'd + 10a°h? + 10a?b® + 5abt + b°.

Observe that 1 +5-+ 104+ 10+ 541 = 32, that is, we
have accounted for the whole of the 32 terms which would.
be in the last [ine of the tree appropriate to this case. .

We may now go on to the solution of our general problem.
Suppose that p is the number of a's and ¢ is the nu,mBer of
b's which are multiplied together in a certain termy™wé want
to find the number of possible arrangements of Ahese p a’s
and ¢ b's. Let us replace them for the moméat by p capital
letters and ¢ small ones, making p + ¢ Jetters altogether.
Then any arrangement of these in \§‘?ﬁ£{ﬁ%\§-a‘ﬂﬁlﬁm%}1ﬁ@em
and small ones is one of a group of equivalent arrangements
got by permuting the capitals ameng themselves and the
small letters among themselyest *Now by permuting the
capital letters we can make ¥ arrangements, and by per-
muting the small letters g Marrangements. Hence every ar-
rangement in respect of ¢apitals and smalls is one of a group
of p! X gq! equivaleni drrangements. Now the whole number
of arrangements of the p + ¢ letters is (p +¢) !; and, as we
have scen, eve(ji “arrangement in respéct of capitals and
smalls is he@:'repeated p!xg! times. Consequently the
number wesare in search of is got by dividing (p+¢)! by
plXq L’i‘lﬁs is written in the form of a fraction, thus:—

AN (p+g!
O ) pl-q!
al_t-hough it 1s not a fraction, for the denominator always
divides the numerator exactly. In fact, it would be absurd
te talk about half a quarter of a way of arranging letters.
We have arrived then at this result, that the number of
ways of arranging p o’s and q b's 4s
p+a!
pl-g!
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This is also (otherwise expressed) the number of ways of
dividing p + ¢ places into p of one sort and ¢ of another;
or again, it is the pumber of ways of selecting p things out
of p + ¢ things.

Applying this now to the expression of (o + b)*, we {ind
that each term, other than the first and last, is of the form

1
Ua. G zhe,
pl-q!
where p + g = n; and that we shall get them all by gm@?;to
g successively the values 1, 2, 3, &c., and to p the values got
by subtracting these from =. For example we sha.l’l And that
61 6! (¢
4‘ gqa:!b? 3‘ 510’31)3
61 \J
2 N
+2, oy bt 4+ Gab® -Kh
w.dbraulibrary.org.in

The caleulation of the nurobers may ‘be considerably short-
ened. Thus we have to divide 1 2%3.4.5-6by1-2-3-4;
the result is of course 5 - 6, Thfs has to be further divided
by 2, so that we finally get"5 - 3 or 15. Similarly, to calculate

A0 6!
O s
we have only toidivide4-5-6by 1. 2.3 or 6, and we get
simply 4 - 5 6r°20.

To “irlte:down our expression for (a 4 b)® we require an-
other pigce of shorthand. We have seen that it consists of &
numherof terms which are all of the form

i v 7!

VvV T 1%

but which differ from one another in having for p and ¢ dii-
ferent pairs of numbers whose sum is ». Just as we used !
for a product, so we use the Greek letter £ (Sigma) for a

sum. Namely, the sum of all such terms will be written
down thus:—

(@ +b)f =a° +6a° +

}Ol-q!a%q’ v +g=nl



On a Theorem concerning any Power of a -+ b 29

Now we may very reasonably include the two extreme
terms ¢® and 5™ in the general shape of these terms. For sup-
pose we made p=n and g =0, the corresponding term
would be:—

n!l
nl 0170
and this will be simply a* if 0! =1 and *= 1. Of cotiste”
there is no sense in ““the product of the first no numbel‘s” ;
but if we consider the rule O

m+Dl=@m+1) (n)!, *‘ .

which holds good when # is any number, to be?al‘so true when
n stands for nothing, and consequently a1 = 1, it then

becomes www‘charauljbrary.org.in

11=0 N
and we have already seen reason %6 make 1! mean 1, Next
if we say that b2 means the result of multiplying 1 by & ¢
times, then 5° must mean, the result of multiplying 1 by b
no times, that is, of notmuitlplymg it at all; and this result
Makmg then tk@e conventional interpretations, we may
say that

n!
((L + ‘739’1 = p g Iapbq, [’P +g= ﬂ]!

it being Herstood that p is to take all values from » down
to 0, 4 4o ¢ all values from 0O up to =n.
:Tﬁhlh result is called the Binomial Theorem, and was
Qi;igina]ly given by Sir Isaac Newton. An expression con-
alning fwo terms, like @ + b, is sometimes called binomial;
and the name Binomial Theorem is an abbreviation for
thearem concerning any power of @ binomial expression.
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§10. On Operations which appear to be without Meaning

We have so far considered the operations by which, when
two numbers are given, two others can be determined frem
them.

First, we can add the two numbers together and get their
sum. ;

Secondly, we can multiply the two numbers together, a}ld
get their product. A

To the questions what is the sum of these two pumbers,
and what is the product of these two numbefs, there is
always an answer. But we shall now considef, guestions to
which there is not always an answer. \%

Suppose that I ask what number adde@.to 3 will produce
7.1 know, of canrse, thatikhe answer 18 this is 4, and the op-
eration of getting 4 is called subtfasting 3 from 7, and we
denote it by a sign and write ity «

7-3 . 4.

But if I ask, what stimber added to 7 will make 3, 2l
though this questior8¢ems good English when expressed i
words, yet there {5ho answer o it; and if I write down in
symbols the espression 3 — 7, T am asking a question t0
which there’isno answer.

There.i:s\bhen an essential difference between adding and
subtragting, for two numbers always have a sum.

IfI write down the expression 3 4 4, T can use it as mean-
g something, because T know that there is a number which

is denoted by that expression. But if I write down the ex-
pression 3 — 7, and then speak of it as meaning something,
I shall be talking nonsense, because 1 shall have put to-
gether symbols the realities corresponding to which will not
go together. To the question, what is the result when one
number is taken from another, there is only an answer in

! The phrase is awkward. What is meant is that the operation of addition

performed on two numbers yields one new number; the operation of multi-
plication, another new number.—J.R.N,

N\
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the case where the second number is greater than the
first.

In itne same way, when I multiply together two numbers
I know that there is always & produet, and I am therefore
free to use such a symbol as 4 X 5, because I know that there
is some number that is denoted by it. But I may now ask a
question; 1 may say, What number is it which, being mulfis
phed Ly 4, produces 20? The answer I know in this case.is b,
and the operation by which I get it is called divid\iﬁg\’20
by 4. This is denoted again by a symbol, 20 + 4 = 5

But suppose I say divide 21 by 4. To thighere is no
answer, {here is no number in the sense in{which we are
at present using the word—that is to saw, theére is no whole
number-—which being multiplied by 4 ,@H produce 21: and
if T take the expression 21 + 4, and 8p8ak, afuit o{x%wung
something, I shall be talking nongehse, because I shall have
put together symbols whose realitiés will not go together.

The things that we have gbserved here will occur again
and again in mathematics+for every operation that we can
invent amounts to asking a question, and this question may
or may not have an.answer according to circumstances.

If we write dow:Q\the symbols for the answer to the ques-
tion in any of those cases where there is no answer and then
speak of thedtsas if they meant something, we shall talk
nonsense. But this nonsense is not to be thrown away as
useless\fubbish. We have learned by very long and varied
experiehce that nothing is more valuable than the nonsense
Wl:qch we get in this way; only it is to be recognized as non-

{3ense, and by means of that recognition made into sense.

We turn the nonsense into sense by giving a new meaning
to the words or symbols which shall enable the question to
have an answer that previously had no answer.

Let us now consider in particular what meaning we can
give to our symbols so as to make sense out of the at present
nonsensical expression, 3 — 7.
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§11. Steps!

peration of adding 3 to 5 is written 5 -+ 3, and the

’.I‘hc.g 2. We may here regard the + 3 as a way of stepping
rf,-;u”; io 8, and the symbol + 3 may be read in words, step
fro™ -d three- ,
fmﬂ"“ the same way, if we subtract 3 from § and get 2, we(

., the process symbolically 5 — 3 =2, and the sy;nk@l
writé ay be regarded as a step from 5 to 2. If the fouer
- I:,as forward this is backward, and we may apgofdingiy
st€P "o i words, step backwards three. A\
reﬂf step is always supposed to be taken frofn’x a number

pich is large enough to make sense of the\result. This re-
v . otion does not affect steps forwardybecause from any
St;_zﬂber we canl ste forward as far ag we like; but backward
5 steD ey onty Be thken from m{mﬁers which are larger
than the step itseld.

The next thing we have teiobserve about steps is that
when two steps are taken iftsuceession from any number, it
does not matter which gf\them comes first. If the two steps
are taken in the same” direction this is clear enough. + 3 + 4,
meaning step forward 3 and then step forward 4, directs us
1o step forward by the number which is the sum of the num-
pers in the fwé/steps; and in the same way — 3 — 4 directs
us to step/Backward the sum of 3 and 4, that is 7.

If the\steps are in opposite directions, as, for example,
+ 8 =\, we have to step forward 3 and then backward 7,
and the tesult is that we must step backwards 4. But the
{ satne result would bave been attained if we first stepped

backward 7 and then forward 3. The result, in fact, is always
a step which is in the direction of the greater of the two steps,
and is in magnitude equal to their difference.

! Here the transition from cardinal numbers to numbers bearing signs:
+, —, is abrupt in the sense that the connection between them is not shown,
In modern mathematiss signed nurobers are defined in terms of cardinal num-

bers. It thus becomes unnecessary to conceive of signed numbers as analogous

to physieal steps—forward or backward, albeit the analogy iz not without
didactic value.—J.R.N.
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We thus see that when two steps are taken in succession
they are equivalent to one step, which is independent of
the order in which they are taken.

We have now supplied a2 new meaning for our symbols,
which makes scpse and not nonsense out of the symbol
3 — 7. The 3 must be taken to mean + 3, that is, step for-
ward 3; the — 7 must be taken to mean step backward 7,
and the whole expression no longer means take 7 from 3,
but add & to and then subtract 7 from any number which, is
large encugh to make sense of the result. And accortshngly
we find that the result of this operation is — 4, or,, as we may
write it, + 3 — 7= — 4.

From this it follows by a mode of proof prec1s.ely analogous
to that which we used in the case of milhplication, that
any number of steps taken in suqcmalg,mgeaﬁ,mfgwmnt
which ig independent of the order “which they are taken,
and we may regard this rule as{an extension of the rule
already proved for the additiontof numbers.

A step may be multlphed' or taken a given number of
times, for example, 2(— 3)"="~ 6; that is to say, if two back~
ward steps of 8 be peSsible, they are equivalent to a step
backwards of 6. ¢\J

In this operatu}l of multiplying a step it is clear that
what we do i 18/ tomulnply the number which is stepped, and
to retain the character of the step. On multiplying a step
forwards-we'still have a step forwards, and on multiplying
a step/backwards we still have a step backwards.

This' multiplying may be regarded as an operation by

Ve whlch we change one step into another. Thus in the example

we have just considered the multiplier 2 changes the step
backwards 3 into the step backwards 6. But this operation,
as we have observed, will only change a step into another
of the same kind, and the question naturally presents itself,
.IS 1% possible to find an operation which shall change a step
into one of g different kind? Such an operation we should
naturally call reversal. We should say that a step forwards
18 reversed, when it is made into a step backwards; and a
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step backwards is reversed when it is made into a step for-
wards.

1f we denote the operation of reversal by the letter », we
can, by combining this with a multiplication, change — 3
into -+ 6, a step backwards 3 into a step forwards 6; viz. we
should have the expression r2(— 3) = 4 6. Now the opera-,
tion, which is performed on one step to change 1t inio ans
other, may be of two kinds: either it keeps a step iy the
direction which it originally had, or it reverses it. If tdznake
things symmetrical we insert the letter k¥ when @igiep 18
kept in its original direction, we may write the>equation
k2(— 3) = —~ 6 to express the operation of simglymultiplying.

Of course if 1s possible to perform on gny given step a
succession of these operations. If 1 take‘the step + 4, treble
it, and reverse it, I get — 12. If T detble this and keep if, 1
get ~ ,“’é“.h‘?’i&é’ﬁ%f?%@l‘ x%;ﬂtten,:k2(r3)(+ 4) = — 24, But
this is equal to r6(+ 4}, which tel{s us that the two successive
operations which we have pérformed on this step, trebling
and reversing it, doubling #nd keeping it, are equivalent to
the single operation of(multiplying by 6 and reversing it.
It is clear also tha{-'\’whatever step we had taken the two
first operations performed successively are always equivalent
to the third, and we may thus write the equation k2(r3) = r6.

Suppose'l{owever we take another step and treble it and
reverse it;end then double it and reverse it again; we should

have the result of muitiplying it by six and keeping its
direetion unchanged.

~Dhis may be written r2(r3) = % . 6.

‘¥ we compare the last two formule with those which we
previously obtained, viz. k2(— 3) = — 6 and 72(— 3) = + 6,
we shall see that the two sets are alike, except that in the
one last obtained % and r are written instead of 4 and —
respectively.

The two sets however express entirely different things.
Thus, taking the second formul® of either sot on the one
hand, the statement is, Double and reverse the step back-
ward 3, and you have a step forward 6; on the other hand,
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Treble and reverse and then double and reverse any step
whatever, and you have the effect of seztupling and keeping
the step. We shall find that this analogy holds goed in gen-
eral, that is, if we write down the effect of any number of
successive operafions performed upon a step, there will
always be a corresponding statement in which this stepping
is replaced by an operation; or we may say, any operation,
which converts one step into another will also convert oné
operation into another where the converted operation(is’a
multiplying by the number expressing the step and, d.Reep-
ing or reversing according as the step is forward or back-
ward. O

§12. Extension of the M eaning'%f ’Symbols

www . dbraulibrary.org.in

We now proceed to do something\Wiiich must apparently
introduce the greatest confusion, but which, on the other
hand, inereases enormously ouripewers.

Having two things whichiwe have so far quite rightly
denoted by different symbdls, and finding that we arrive at
results which are uniforshand precisely similar to one another
except that in one of €hém one set of symbols is used, in the
other another set we alter the meaning of our symbols so as
to see only one @6t instead of two. We make the symbols -+
and — mean~for the future what we have here meant by &
and r, vig{Réep and reverse. We give them these meanings
in addifion to their former meanings, and leave it to the
context*to show which is the right meaning in any particu-
.lal‘\;e&se. Thus, in the equation (— 2)(— 3) = + 6 there are
tW6 possible meanings; the — 3 and + 6, may both mean
steps, in this case the statement is: Double and reverse the
step backwards of 3 and you get the step forward 6. But the
=3 and the + 6 may also mean not steps but operations,
and in this case the meaning is triple and reverse and then
double and reverse any step whatever, and you get the same
result as if you had sextupled and kept the step.

Let us now see what the reason is for saying that these
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two meanings can always exist together. Let us first of all
take the second meaning, and frame a rule for finding the
result of any number of successive operations.

First, the number which is the multiplier in the result
must clearly be the product of all the numbers in the suc-
cessive operations. )

Next, every pair of reversals cancel one another, so thab,
if there is an even number of them, the result must(be an
operation of refaining. O

This then is the rule: Multiply together the-fyumbers in
the several operations, prefixing to them + if there'is an even
number of minus or reversing operations, prefixing — if there
is an odd number, \

In the next place, suppose that piahy successive opera-
tions are performed upon. a step,Fhe number in the result-
ing step il MRy g) #H ‘product of all the numbers in the
operations and in the originalistep.

If there is an even numiber of reversing operations, the
resulting step will be ofthe same kind as the original one;
if an odd number, ofthe opposite kind. Now let us suppose
that the original step were a step backwards; then if there
is an even nun}t%} of reversing operations, the resulting step
will also bea\step backwards. But in this case the number
of (—) sighs,reckoned independently of their meaning, will
be odd{and so the rule coincides with the previous one.

I\Qa}n'odd number of reversing operations is performed on
a.hegative step, the result is a positive step. But here the
.. (Whole number of (-) sigus, irrespective of their meaning, is

) an even number; and the result again agrees with the pre-

vious one.

In all cases therefore by using the same symbols to mean
either a “forward” and a “backward” step respectively, or
““keep’” and “reverse’’ respectively, we shall be able to give
to every expression two interpretations, and neither of these
will ever be untrue.

In the process of examining this statement we have shown
by the way that the result of any number of successive op-
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erations on a step is independent of the order of them. For
‘t is always a step whose magnitude is the product of the
numbers in the original step and in the operations, and
whose character is determined by the number of reversals.

§13. Addition and Multiplication of Operations

We may now go on to find a rule which connects together
the muitipiication and the addition of steps. ¢(\))

If T muitiply separately the steps + 3 and — 7 by 4)and
then take the resultant of the two steps which I sq'obtain, I
shall get the same thing as if I had first formed the resultant
of +3 and — 7, and then multiplied it by 4{In fact, + 12
~— 28 = — 16, which is 4(— 4). This is true iu*general, and it
obviously amounts to the original m@tﬁﬁgﬂj%?ﬁn@}}gs
comes to the same number in whateyerorder we count them.
Only that now some of the counting has to be done back-
wards and some again forwards\

But now, besides adding together steps, we may also in a
certain sense add together operations. It seems natural to
assume at once that bji adding together + 3 and — 7 re-
garded as operationg, we must needs get the operation —~ 4.
It is very important not to assume anything without proof,
and still moresifiportant not to use words without attaching
a definite meaning to them.

The meéhing is this, If I take any step whatever, treble
it withGut altering its character, and combine the result
with-$e result of multiplying the original step by 7 and re-

etsing it, then I shall get the same result as if I had multi-

Dlied the original step by 4 and reversed it. This is perfectly
true, and we may see it to be true by, as it were, performing
our operations in the form of steps. Suppose I take the step
+ 5, and want to treble it and keep its character unchanged.
I can do this by taking three steps of five numbers each in
the same direction (viz. the forward direction) as the original
step was to be taken. Similarly, if I want to multiply it by
~ 7, this means that I must take 7 steps of five numbers
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each in the opposite or backward direction. Then finally,
what T have to do is to take three steps forwards and seven
steps backwards, each of these steps consisting of five num-
bers; and it appears at once that the result is the same as
that of taking 4 steps backwards of five numbers each.

We have thus a definition of the sum of two operations;
and it appears from the way in which we have arrived at it\
that this sum is independent of the order of the opnratlons

We may therefore now write the formulse:—

"\
L 3 Ny

a+tb=b+a
alb+ ¢) = ab+ac &O
(a+d)c=ac+be C
ab = ba,

AY;

and consider the letters to signify .ﬁp;rations performed
upon whep AWMU ST 4l truth of these laws the whole of
that reasoning which we applied, to finding a power of the
surs of two numbers is applieable to the finding of a power
of the sum of two operations. If it did not take too much
time and space, we might go through it again, giving to all
the symbols their new\meanings.

It is worth whxk;e\perhaps by way of example, to explain

clearly what is @heant by the square of the sum of two op-
erations. M\

We willtake for example, -+ 5 and — 3.

The, formula tells us that (+ 5 — 3)? is equal to (+ &)
+ (=@)? + 2(+ 5)(— 3). This means that if we apply to any
stqp twice over the sum of the operations + 5 and — 3, that
1810 say, if we multiply it by 5 and keep its direction, and

combine with this step the result of multiplying the original
step by 3 and reversing if, and then apply the same process
to the result so obtained, we shall get a step which might
also have been arrived at by combining together the follow-
ing three steps:—

First, the original step twice multiplied by 5.

Secondly, the original step twice multiplied by 3 and
twice reversed; that is to say, unaltered in direction.
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Thirdly, twice the result of tripling the original step and
reversing it, and then multiplying by 5 and retaining the
direction.

§14. Division of Operations

We have now seen what is meant by the multiplication of
operations; let us go on to consider what sort of question is{
agked by division. A

Let us take for example the symbolic statement — 3(%'5)
= — 15; and let us give it in the first place the meaning-that
to triple and reverse the step forward 5 gives the.step baclk-
ward 15. We may ask two questions upon this statement.
First, What operation is it which, being perfermed on the
step forwards 5, will give the step backwards 157 The an-
swer, of course, is triple and reversg. QUsvrs TBaY- A5k, fhis
question. What step is that, whichy being tripled and re-
versed, will give the step backwards 15?7 The answer is, Step -
forwards 5. But we have onky one word to describe the
process by which we get the“answer in these two cases. In
the first case we say thdbwe divide the step — 15 by the
step + 5; in the second'Case we say we divide the step — 15
by the operation — 8.

The word divide thus gets two distinct meanings. But it is
very important-$o notice that symbolically the answer is the
same in thé’fwo cases, although the interpretation to be
given tQ"{iiié different.

The$tép — 15 may be got in two ways; by tripling and
reverging the forward step + 5, or by quintupling the back-
‘ward step ~ 3. In symbols,

D = FH=3H =15

Hence the problem, Divide — 15 by — 8 may mean either of
these two questions: What step is that which, being tripled
and reversed, gives the step — 157 Or, What operation is that
which, performed on the step — 3, gives the step — 157 The
answer te the first question is, the step + 5; the answer to
the second is the operation of quintupling and retating
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direction, that is, the operation + 5. Sothat although the word
divide, as we have said, gets two distinct meanings, vet thetwo
different results of division are expressed by the same symbol.

In general we roay say that the problem, Divide the step
a by the step b, means, Find the operation (if any) which
will eonvert b into a. But the problem, Divide the step a by
the operation b, means, Find the step (if any) which b wills
convert into 4. In both cases, however, the process and\he
symbolie result are the same. We must divide the number
of a by the number of b, and prefix to it -+ if the signs of
@ and b are alike, — if they are different. K2,

We may also give to our original equation~™

(-3) X (+5)=— 15

its other mea:nmg, in which both — 3 ci‘ + 5 are operations,
and — 15 &FWP B, which is eqmvalent to performing
one BT'% r the other. In thiscase the problem, Divide
the operation — 15 by the Qpera.mon ~ 3 means, Find the
operation which, being suceeeded by the operation — 3, will
be equivalent to the operation — 15. Or generally, Dl‘”de
the operation @ by tl eperation b, means, Find the opera-
tion which, beingsiteceeded by b, will be equivalent to .

Now it is worﬂhnoticmg that the division of step by step
and the d}.VlS\loﬂ of operation by operation, have a certain
likeness be\tWeen them, and a common difference from the
d.lVlSI({l ofstep by operation. Namely, the result of dividing

a by‘ B, or, as we may write it, — 7 when a and b are both

. «stbps or both operations, is an operation which converts b
into g. This we may write in shorthand,

a

b

But when g is a step and b an operation, the result of division

is a step on which the operation & must be performed to con
vert it mto a; or, in shorthand,

b=aq,

43
b-Z=a.
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The fact that the symbolic result is the same in the two
cases may be stated thus:—

a a
E cb=b- B,

and in this form we see that it is a case of the commutative
law. So long, then, as the commutative law is true, there 18
no occagion for distinguishing symbolically between the twe
meanings. But, as we shall see by-and-by, there is oceasion
to deal with other kinds of steps and operations which the
commnutative law does not hold; and for these a ¢onvenient
notation has been suggested by Professor Cayley. Namely,
l%l means the operation which makes b in\tq a* but {%1 repre-
gents that which the operation b will cm{{férf into a. So that—

wwyrdbraulibrary.org.in

al Qe
B b—a,bl.it":ﬁ bi—-a.

1t is however convenient_t@ settle beforehand that when-
ever the symbol % is uiéd without warning it is to have the
first meaning—nan@a‘ly’, the operation which makes & into a.

§15. Qeﬁ?fal Results of our Extension of Terms

It Wﬂ{be noticed that we have hereby passed from the
COHS,i@e}ation of mere numbers, with which we began, to
theleonsideration first of steps of addition or subtraction

{of umber from number, and then of operations of multi-

Plying and keeping or multiplying and reversing, performed
on these steps; and that we have greatly widened the mean-
ing of all the words that we have employed.

To addition, which originally meant the addition of two
numbers, has been given the meaning of a combination of
steps to form a resultant step equivalent in effect to taking
them in succession.

To multiplication, which was originally applied to two
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numbers only, has been given the meaning of a combination
of operations upon steps to form a resultant operation equiv-
alent to their successive performance.

We have found that the same properties which charae-
terize the addition and multiphication of numbers belong
also to the addition and multiplication of steps and of op-
erations, And it was this very fact of the similarity of prop-
erties which led us to use our old words in a new gonse. We
shall find that this same process is carried op~in “the con-
sideration of those other subjeets which lie before us; but
that the preeise similarity which we have! lﬁre observed in
the properties of more simple and more complex operations
will not in every case hold good; so, ¢hat while this gradusl
extension of the meaning of termg\g Eerhaps the most power-
ful instrument of research Whlch has yet been used, it is

alwamtﬂdb&&tﬁphﬁ)yeﬂ&ﬁth 4@'caution proportionate to its
importance,



CHAPTER I1

Space

Q.
§1. Boundaries take up no Room

N

oA\

1 GeEcMETRY is a physical science. It deals with the gizes"and

: shapes and distances of things. Just as we have studled the
rumber of things by making a simple and obvmus observa~
tion, and then using this over and over agahl to see where
it wonild bring us; so we shall study the s¢iénce of the shapes
and distances of thmgs by making ofie"or two very simple
and obvious observations, and t\h@ disingibhaseooyer and
over again, to see what we can _geb out of them.

The observations that we miake are:—

First, that a thing may;b’é moved about from one place
to ancther without altering its size or shape.

Secondly, that it _ig\possible to have things of the same
shape but of differént sizes.

Beforc we can use these observations to draw any exact
conclusions fmm them, it is necessary to consider rather
more prec sely what they mean.

Things &ake up room. A table, for example, takes up a
Cﬁr‘ba&%part of the room where it is, and there is another
pa.rt. of the room where it is not. The thing makes a dif-

~ fe}ence between these two portions of space.
\J Between these two there is what we call the surface of
the table.

We may suppose that the space all round the table is
filled with air. The surface of the table is then something
just between the air and the wood, which separates them
frora one another, and which is neither the one nor the other.

1t is a mistake to suppose that the surface of the table is
& very thin piece of wood on the outside of it. We can see

43
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that this is a mistake, because any reason which led us to
say so, would lead us also to say that the surface was a very
thin layer of air close to the table. The surface in fact is com-
mon to the wood and to the air, and takes up itsel{ no room
whatever.!

Part of the surface of the table may be of one colour and,
part may be of another. .

On the surface of this sheet of paper there is drawn » rotnd
black spot (Fig. 10). We call the black part a circle. It &ivides

g R
3
at ¥ i
M

Fic. 10 '

not.
Thisng&qlﬁ)%a}lyorgﬂm on the surface, although the
surface 1tself takes up no roomih space. We are thus led
to consider two different Kinds of room; space-room, in
which solid bodies are, and“in which they move about; and
surface-room, which may be regarded from two different
points of view. Fr x;@::ine point of view it is the boundary
between two adjacent portions of space, and takes up no
space-room whatever. From the other point of view it is
itself also g lkind of room which may be taken up by parts
of it, _ ¢
These'parts 1o turn have their boundaries.
Between the black surface of the circle and the white
) osgﬁace of the paper round it there is a line, the eircum-

X

. ANY; i
the surface into two parts, one where it@&nd one where it is

¥ % It is ceriain that however smooth a natural surface may appear to be,
it could be mapnified to roughness. Hence, in the case of the surface of the
t{able and the air, it would seem probable that there is a layer in which par-
ticles of waad and air are mingled, The boundary in this case of air and table
would not be what we ““see and feel” (of, p. 46), nor would it correspond to the
surface of the geometer, We are, I think, compelled to consider the surface
of the geometer as an “idea or imaginary conception,” drawn from the
apwt (not real) boundaries of physical objects, such as the writer is de-
seribing. Strongly as T feel the ides} nature of geometrical coneceptions in the

exact sciences, I have thought it unadvisable 1o alter the t istineti
¢ _ : ext. The distinetion
is made by Clifford himself {Essays, I pp. 306-321).—K.P.
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ference of the circle. This line is neither part of the black
nor part of the white, but is between the two. It divides one
from the other, and takes up no surface-room at all. The line
is not, a very thin strip of surface, any more than the surface
is a very thin layer of solid.

Anything which led us to say that this line, the boundary
of the black spot, was a thin strip of black, would also leat{
us to say that it was a thin strip of white. .

We may also divide a line into two parts. If thepaper

L 3 N
P
3

Fro. 1 )

with this black cirele upon it were dippedinto water so that
part of the black circle were submerged, then the line sur-
rounding it would be partly in tHe et by pastiy out
(Fig. 11).

The submerged part of th line takes up room on it. It
goes a corfain part of the way round the circumference.
Thus we have to consider line-room as well as space-room
and surface-room. Fhe line takes up absolutely no room on
the surface; it is erely the boundary between two adjacent
portions of it. il less does it take up any room in space.
And yet ith\bi@s a cortain room of its own, which may be
divided ifito parts, and taken up or filled by those parts.

Theése/parts again have boundaries. Between the sub-
mergeﬁ portion of the circumicrence and the other part
there are two poinis, one at each end. These points are

{\nicither in the water nor out of it. They are in the surface

of the water, just as they are in the surface of the paper, and
on the boundary of the black spot. Upon this line they take
up absolutely no room at all.

A point is not a very small length of the line, any moare
than the line is 2 very thin strip of surface. Tt is a diviston
between two parts of the line which are next one another,
and it takes up no room on the line at all,

The important thing to notice is that we are not here
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talking of ideas or imaginary conceptions, but only making
common-sense observations about matters of every-day ex-
perience.

The surface of a thing is something that we constantly
observe. We can see it and feel it, and it is a mere commons-
sense observation to say that this surface is common to the,
thing itself and to the space surrounding it.

A line on a surface which separates one part of the sur{aeé
from another is also a matter of every-day experience€)It 1s
not an idea got at by supposing a string to becomé indefi-
nitely thin, but it is a thing given directly by obf@rvation as
belonging to both portions of the surface whieh it divides,
and as being therefore of absolutely no thi\ckness at all. The
same Iay be said of & point. The poinfwhich divides the
part of our cireumference which is Qin.'}mter from the part
which ig.putapfemmtor isoas \Bbserved thing. It is not an idea
got at by supposing a small parficie to become smaller and
smaller without any limit, but'it is the boundary between
two adjacent parts of a lingwhich is the boundary between
two adjacent portions 6. & surface, which is the boundary
between two adjaee@..portions of space. A point is a thing
which we can seg ﬁzd know, not an abstraction which we
build up in ourthéughts.

‘When we .t:alk of drawing lines or points on a sheet of
paper, we-lise the language of the draughtsman and not of
the gfs\cineter. Here is a picture of a cube represented by
linesyin the draughtsman’s sense (Fig. 12). Each of these so-

‘ ,qu}‘ed “lines” is a black streak of printer’s ink, of varying
breadth, taking up a certain amount of room on the paper.

Fie. 12

By .dra.wing such “lines”” sufficiently close together, we might
entirely cover up as large a patch of paper as we liked. Each
of these streaks has a line on each side of it, separating the
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black surface from the white surface; these are true geometri~
cal lines, taking up no surface-room whatever. Millions of
millions of them might be marked out between the two
boundaries of one of our streaks, and between every two of
these there would be room for millions more.

8till, it is very convenient, in drawing geometrical figures,
to represent lines by black streaks, To avoid all possible.®
misunderstanding in this matter, we shall make a conven-
tion once for all about the sense in which a black stregk™ 15t
represent a line. When the streak is verfical, or cores stralght
down the page, like this |, the line represented by ‘it is its
right-hand boundary. In all other cases the diné shall be the
upper boundary of the streak.

So also in the case of a point. When He try to represent a
poirit by a dot on a sheet of paper; «r@@ Inake . a Qla%l;; %mtch
of irregular shape. The boundary{of this black pa.tc s a
line, When one point of this boundary is higher than all the
other points, that highest peifit shall be the one represented
by the dot. When howeven 8everal points of the boundary
are at the same heigh{:,(l")ut none higher than these, so that
the boundary has a flab piece at the top of it, then the right-
hand extremity of ‘this flat piece shall be the point repre-
sented by the ,dtiﬁﬁ

This deterfthniation of the meaning of our figures is of no
practical mse! We lay it down only that the reader may not
fall mto}the error of taking patches and streaks for geomet-
ricalypoints and lines.

N

S

N\ S

§2. Lengths can be Moved without Change

Let us now consider what is meant by the first of our ob-
servations about space, viz., that a thing can be moved
about from one place to another without altering its size
or shape.

First as to the matter of size. We measure the size of a
thing by measuring the distances of various points on it.
For example, we should measure the size of a table by meas-
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uring the distance from end to end, or the distance across
it, or the distance from the top to the bottom. The measure-
ment of distance is only possible when we have semething,
say a yard measure or a piece of tape, which we can carry
about and which does not alter its length while it is carried
about. The measurement is then effected by holding this
thing in the place of the distance to be measured, and Shs
serving what part of it coincides with this distance. O

Two lengths or distances are said to be equal wigen the
same part of the measure will fit both of thema~Jhus we
should say that two tables are equally broad, iffywe marked
the breadth of one of them on a piece of tapé,’}znd then car-
ried the tape over to the other table and‘ifound that its
breadth eame up to just the same marky Now the piece of
tape, although convenient, is not ah’sq!htely necessary to the
finding enbtof dhigductr3¥e might have turned one table up
and put it on top of the otheriand so found out that the
two breadths were equal. OxWé may say generally that two
lengths or distances of any kind are equal, when, one of
them being brought up’elose to the other, they can be made
to fit without alteration, But the tape is a thing far more
easily carried about than the table, and so in practice we
should test theequality of the two breadths by measuring
both against'the same piece of tape. We find that each of
them is, e’gﬁal to the same length of tape; and we assume
that f@ tengths which are equal to the same length are equal 10 *
each\0ther. This is equivalent to saying that if our picce of
~fape be carried round any closed curve and brought back to
N\ s original position, it will not have altered in length.

How so? Let us assume that, when not used, our piece
of tape is kept stretched out on a board, with one end against
a fixed mark on the board, Then we know what is meant by
two lengths being equal which are both measured along the
tape from that end. Now take three tables, A, B, C, and sup-
pose we have measured and found that the breadth of A is
equal to that of B, and the breadth of B is equal to that of
C, then we say that the breadth of A is equal to that of C.
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This means that we have marked off the breadth of A on the
tape, arnd then carried this length of tape to B, and found it
fit. Then we have carried the same length from B to C, and
found it fit. In saying that the breadth of C is equal to that
of A, we assert that on taking the tape from C to A, whether
we go near 1B or not, it will be found to fit the breadth of
A, That is, if we take our tape from A to B, then from B,
to C, and then back to A, it will still fit A if it did sg at
first. ¢\

These considerations lead us to a very singular conélision.
The reader will probably have observed that we“have de-
fined length or distance by means of a measure which can
be carried about without changing dts lengthi But how then
is this property of the measure to be testéd? We may carry
about a yard measure in the form of a\qu j&& test our tape
with; hut all we can prove in that Way IS [{ the two things
are always of the same length when they are in the same
place; not that this length is uhaltered

The fact is that everything would go on quite as well if
we supposed that thmgs did change in length by mere
travelling from place. tso place, provided that (1) different
things changed equdlly, and (2) anything which was carried
about and brought back to its original position filled the
samne space.!sAll;that is wanted is that two things which fif
in one placeshould also fit in another place, although brought
there bg\d’“fferent paths; unless, of course, there are other
reason§ €0 the contrary. A piece of tape and a stick which
fit onc another in London will also fit one another in New

Yok, although the stick may go there across the Atlantic,

and the tape via India and the Pacific. Of course the stick
may expand from damp and the tape may shrink from dry-
ness; such non-geometrical circumstances would have to be
allowed for. But so far as the geometrical conditions alone
are concerned—the mere carrying about and change of
placc—two things which fit in one place will fit in another:

! These remarks refer to the geometrical, and not necessarily to all the
physical properties of bodies.—K.P.
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Upon this fact are founded, as we have seen, the notion
of length as measured, and the axiom that lengths which
are equal to the same length are equal to one another.

Is it possible, however, that lengths do really change by
mere moving about, without our knowing it?

Whoever likes to meditate seriously upon this question
will find that it is wholly devoid of meaning. But the time

ermployed in arriving at that conclusion will not have E)Qeﬂ
altogether thrown away.

a
% Ny

§3. The Characteristics of Sha;pie

We have now seen what is meant by saying that a thing
can be moved about without a.ltering,its\size; namely, that
any length which fits a certain meagure in one position will
also fit thaj. messuseovdien both have been moved by any
paths to some other position..liét us now inquire what we
mean by saying that a thinglean be moved about without
altering its shape. A\

First Jet us observe@hat the shape of a thing depends
only on its boundjng Surface, and not at all upon the inside
of it. So that we mé?always speak of the shape of the surface,

and we shall mgen the same thing as if we spoke of the shape
of the thing\"
7N

Fig. 13

1et us observe then some characteristies of the surface of
things. Here are a cube, a cylinder, and a sphere (Fig. 13). The
surface of the cube has six flat sides, with edges and corners.
The cylinder has two flat ends and a round surface between
‘them; the flat ends being divided from the round part by

two circular edges. The sphere has a round smooth surface
all over.
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We ohbserve at once a great distinetion in shape between
smooth parts of the surface, and edges, and corners. An edge
being a line on the surface is not any part of it, in the sense
of taking up surface room; still less is a corner, which is &
mere point. But still we may divide the points of the surface
into those where it is smooth (like all the points of the sphere,
the round and flat parts of the eylinder, and the flat sides &f
the cube), into points on an edge, and into corners. For'eon-
venience, let us speak of these points respectively ag 8mooth-
points, edge-points, and corner-poinis. We may als{g\put the
edges snd corners together, and call them rough-poinis.

Now let us take the sphere, and put it upen 4 flat face of
the cube (Fig. 14). The two bodies will {)e} ifi contact at one
7.\
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point; that is to 8y, & certain point on the surface of the
sphere and a.dertain point on the surface of the cube are
made to coirtdide with one another and to be the same point.
And thesélare both smooth-points. Now we cannot move the
spherg.eper so little without separating these points. If we roll
it a yery little way on the face of the cube, we shall find that
m?;ﬁiﬂerent point of the sphere is in contact with a different

\ )

Fre. 15

point of the cube. And the same thing is true if we place the
sphere in contact with a smooth-point on the cylinder

(Fig. 15).
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Next let us put the round part of the cylinder on the flat
face of the cube (Fig. 16). In this case there will be contact all
along a line. At any point of this line, a certain point on the
surface of the eylinder and a certain pointon the surface of the
cube have been made to coincide with one another and to be
the same point. And these are both smooth-points. It is just

as true as before, that we cannot move one of these bodies~

ever so little relatively to the other without separating tk\le

7'\
% Ny
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) AN
points S tHEFHHEES Which are ih eontact. If we Toll the
cylinder a very little way on the’;fice of the cube, we shall
find that a different line of the‘eylinder is in contact with a
different line of the cubeMAll the points of contact are
changed. -

Now put the flat end of the cylinder on the face of the
cube (Fig. 17). These twosurfaces fit throughout and makebut
one surface; wellinve contact, not (as before) at a point or
along a line, but/over a surface, Let us fix our attention upon

7\
o $/

N

a particular point on the flat surface of the cylinder and the
point on the’ face of the cube with which it now coincides;
these two being smooth-points. We observe again, that i s
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impossible to move one of these bodies ever so little relatively fo
the other without separating these two poinis.*

Here, however, something has happened which will give
us further instruction. We have all along supposed the flat

face of the cylinder to be smaller than the,ﬁjjat‘ face of the
cube. When these two are in contact, let bhe cylinder stand
on the middle of the cube, as in Fig. 17, he-¢ircle being wholly
enclosed by the square. Then when,we filt the ¢ rh%cli_e;i over
we shall get it into the position of Fig. 18. e have aiready
observed that in this case 1O f'smooth—points which were
previously in contact remajniin contact. But there are two
points which remain in"co}itact ; for in the tilted position a
point on the circular edge of the cylinder rests on a point on
the face of the cubé;and these two points were in contact
before. We mayﬁ}t the cylinder as much or as little as we
like—provided e tilt always in the same direction, not roll-
ing the ey inder on its edge—and these two points will re- -
main ineontact. We learn therefore that when an edge-point
is in gogtact with a smooth-point, it may be possible o move one
of thé hwo bodies relatively to the other without separating those
o~ points.

' The same thing may be observed if we put the round or flat

1 T all these cases {Figs. 14-17) the relative inotion spoken of must be eit'ther
motion of translation or of tilting; one body might have & spin sbout a vertical
axis without any separation of these two points. The true distinciion betwefen
the contact of smooth-points and of smooth- and rough-points seems to be this:
in the former case without separating two points therc is only one degree of
Treedom—namely, gpin about an axis normal to the smooth surfaces at the
points in question; in the latter case there are at least two (edge-point or
smooth-point) and may be an infinite number of degrees of fre_edom—namely,
SpIns about two or more axes passing through the rough-point. The reader
will understand these terms better after the chapter on Motion.—E.P.




54 CuarteEr I : Space

surface of the cylinder against an edge of the cu{oe (Fig. 19,
a, b), or if we put the sphere against an edge of either of the

Fic, 19

L
other bodies. Holding either of them fast, weémay move the

other so as to keep the same two points in’sontact; but in
order to do this, we must always tilt i

i .the same direction.
If, hovt:fe\xs% w iﬁ%&y@’c}‘ﬁwf o.f thfsj ;}ae in contact with
a smooth"Point of the cylinder, as in Fig. 20, we shall find that

: Fra. 20

we can keep these two points in contact without any re-
striction oxi%‘he direction of tilting. We may tilt the cube
any way.we like, and still keep its corner in contact with the
smoothpoint of the cylinder.

Y

\‘;

Fia. 21
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When we put two edge-points together, it makes a dif-
ference whether the edges are in the same direction at the
point of contact (Fig. 21) or whether they cross one another
(Fig, 22). In the former case we may be able to keep the
same two points in contact by tilting in a particular direction;
in the Iatter case we may tilt in any direction. So if a corner
is in contact with an edge-point there is no restriction om™

Edge in contact with edge cms:s‘lmae = 2 degreea of freedom
e, 22

the directior of tiltingiand mueh more if a corner is in con-
tact with a corner (™
The upshot of'all this is, that in o ceriain sense all surfaces
are of the same shape at all smooth-poinis; for when we put
two smoocth=points in contact, the surfaces so fit one another
at those Points that we cannot move one of them relatively
to tbl?s'g}her without separating the points.!
JHN% possible for two edges to fit so that we cannot move
\Meitlier of the bodies without separating the points in con-
tact.* For this it is necessary that one of them should be
re-entrant (that is, should be a depression in the surface,
not & projection), as in Fig. 23; and bere we can Se¢ the pro-
Driety of saying that the two surfaces are of the same shape
at & point where they fit in this way. The body placed in

:Sﬁe, bowever, the footnote, p. 53—K.P. . "
In this case the system which formerly had 2 degrees of rotational free-

dom has been cut down by “constraint’ to zero degrees of rotational free-
dom.—J.R.N,
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contact with the cube is formed by joining together two
spheres from which pieces have been sliced off. If only very

"N\
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small pieces have been sliced off, the re-entrant ’ed’geuwi]l be

very sharp, and it will be impossible to bringthe cube-edge

into contact with it (Fig. 24); if nearly helf of each sphere
P\
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Note that in Fig. 24 théangle between the spheres s less than 90°; in Fig. 25,
greater than 90°; in Fig, 26, exactly equal to 90°. '

Only in the last gasewhere the angle between the spheres is the same 88
the dehedral angle ‘@fthe two faces of the cube in contact with the spheres,
is it not possible $9"* move either of the bodies without separating the pointd

in cantact.”:i}c N
has beeNut off the re-entrant edge will be wide open, and
the gube will rock in it (Fig. 25). There is clearly one inter-
magdiate form in which the two edges will just fit (Fig. 26);
eontact at the edge will be possible, but no rocking. Now in
this case, although one edge sticks out and the other is a
dint, we may still say that the two surfaces are of the same
shape at the edge. For if we suppose our twin-sphere body
to be made of wood, its surface is not only surface of the
wood, but also surface of the surrounding air. And that
which. is 2 diut or depression in the wood is at the same time
a projection in the air. In just the same way, each of the
projecting edges and corners of the cube is at the same time
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a dint or depression in the air. But the surface belongs to one
as much as the other; it knows nothing of the difference be-
tween inside and outside; elevation and depression are ar-
bitrary terms to it. So in a thin piece of embossed metal,
elevation on one side means depression on the other, and
vice versa; but it is purely arbitrary which side we consider
the right one. (Observe that the thin piece of metal is in no
sense a representation of a surface; it is merely a thin solid
whose two surfaces are very nearly of the same shape.) O\

Thus we see that the edge of wood in our cube i'of the
same shape as the edge of air in the twin-spherg~solid; or,
which is the same thing, that the two surfages)are of the
same shape at the edge.

Now this twin-sphere solid is a very r\onvenient one, be-
cause we can so modify it as to makean/elig «faayshans we
like, Hitherto we have supposed thedlices cut off to be less
than half of the spheres; let us .now fasten together these
pieces, and so form a solid with g projecting edge, asin Fig. 27
at right. The two solids so fofmed, one with a re-entrant edge
from the larger pieces, the other with a projecting edge from
the smaller pieces, will\be found always to have their edges
of the same shape,‘or'to fit one another at the edge in the
sense just explai z}.

0\' ¢ —
™ Formed by joining to- Formed by join-
gether the equal, ing together the
larger portions of two equal, smaller
spheres.—J. R.N. portions of two
spheres.—J.R.N.

f1a. 27

Now suppose that we cut our spheres very pearly in half.
(Of course they must always be cut both alike, or the flat
faces would not fit together.) Then when we join together the
larger pieces and the smaller pieces, we shall form solids with
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very wide open edges. The projecting edge_ will he & very
stight ridge, and the re-entrant one a very shight depression.

If we now go a step further, and cut our spheres actually
in half, of course each of the new solids will be again a sphere;
and there will be netther ridge nor depression; the surfaces
will be smooth all over. But we have arrived at this resulf
by considering a projecting edge as gradually widening\out
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until the ridge disappears, );froiby considering a re-entrant
edge as gradually wideninglout until the dint disappears. Or
we may suppose the projecting edge to go on widening out
till it becomes smogth}y and then to turn into a re-entrant
edge. We might @re’sent this process to the eye by putting
into a wheel oflifea succession of pictures like that in Fig. 28,
and then rajgi&ty turning the wheel. We should see the two
spheres, abfirst separate, coalesee into a single solid in (i)
and (iii}then form one sphere as at (iv), then contract
intoradsmaller and smaller lens at (v), (vi), (vii). The im-
portant thing to notice is that the single sphere at (iv) is &
~step in the process; or, what is the same thing, that a smooth-

‘point s a particulor case of an edge-point coming between the
projecting and the re-entrant edges. As being this particular

case of the edge-point, we say that at all smoath-points the
surfaces are of the same shape.

§4. The Characterist?ﬁcsﬁof Surface Boundaries

Rem?,rks like these that we have made about solid bodies
or portions of space may be made also about portions of sur-
face. Only we canuot now say that the shape of a piece of
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surface depends wholly on that of the eurve which bounds
it. Still the oaly thing that remains for us to consider is the
shape of the houndary, because we have already discussed
(so far as we profitably can at present) the shape of the in-
cluded surface.

We shall find it useful to restrict ourselves still further,
and only consider those boundaries which have no rough
points of the surface in them. Thus on the surface of the cubg
we will only consider portions which are entirely included
in one of the plane faces; on the surface of the cylinde\r} only
portions which are entirely included in one of the, flat Taces,
or in the curved part, or which include one of theflat faces
and part of the curved portion. O

This being s, the characteristies which we'have to remark
in the boundaries of pieces of surfac&i}i\mya,hebﬁg%gi%ﬁﬂy
studied by means of figures drawn ot paper. We may end
the paper to assure ourselves thatothe same general prop-
erties belong to figures on a cyMiter, and to make our ideas
quite distinct it is worth while to draw some on a sphere or
other such surface. N

In Fig, 29 are somedpatches of surface; a square, a:tI_lree-
cornered piece, ax@t%o overlapping eircles. For distinct-

Fra, 29

N\

QD
Tiess; ‘the part where the circles overlap is left white, the rest
kg made black.

’ Attending now specially to the boundary of these patches,
we observe that it consists of smooth parts and of corners
or angles. Some of these corners project and somne are re-
entrant. The pieces of surface are not solid moveable things
flke the portions of space we considered before, but we can
I & measure imitate our previous experiments by cutf-:mg
out the figures with a penknife, so as to leave their previous
Positions marked by the holes. We shall then find, on apply-
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ing the cut~out pleces to one another, or to the hojes, that at
all smooth-points the boundaries fit one another in a certain
sense. Namely, if we place two smooth~points it contact we
cannot roll one figure on the other without separating these
points; whereas if we place a sharp-point (or angle) on 8
smooth-point we can roll one figure on the other without
separating the points. If we attempt to put two angles <o
gether without letting the figures overlap, the samg thinigs
Taay happen that we found true in the case of the(cdges of
solid bodies. Suppose, for example, that we tog~to put an
angle of the square into one of the re-entrant/angies of the
figure made by the two overlapping circlesy(If the re-entrant
angle is too sharp, we shall not be able to'\get it in at all; this
is the case of Fig. 21. If it is wide gnbugh, the square wil
be able to rock in it; this is the cag s;’)}Fig. 22, Betwecn these
two theredbsutiPFitéhEdlate case’in which one angle just
fits the other; actual contactfakes place, and no rocking is
possible. In this case we say': that the two angles are of the
same shape, or that they are equal to one another.

From ali this we afeMed to conclude that shape s o matier
of angles, and thig&entity of shape depends on equality of
angle. We deglt with the size of a body by considering &
sunplg casg of t, viz. length or distance, and by measuring 2
suﬂielen}; {mmber of lengths in different directions could find
out all-that is to be known about the size of a body. It 15,
indged, “also true that a knowledge of all the lengths which
cash be measured in a body would carry with it a knowledge
N of its shape; but still length is not in itself an element of

’ shape. That which does the same for us in regard to shape

that length does with regard to size, is angle. In other words,
3}13‘5 as we say that two bodies are of the same size if to any
line that can be drawn in the one there corresponds an ex-
actly equal line in the other, s0 we say that two bodies aT®
of the same shape, if to every angle that can be drawn on one
of 31:12? there corresponds an exactly equal angle on the other-
w 88 we measured le_ngths bg{ a stick or a piece of tape

Wwe measure angles with a pair of compasses; and two
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angles are said to be equal when they fit the same opening
of the compasses. And as before, the statement that a thing
can be moved about without altering its shape may be
shown to amocunt only to this, that two angles which fit in
one place will fit also in another, no matter how they have
been brought from the one place to the other.

85. The Plane and the Straight Line A

We have now to deseribe a particular kind of surfacs and
a particular kind of line with which geometry is very much
concerned. These are the plane surface and the slraight line.

The plane surface may be defined as one§which is of the
same shape all over and on both sides. This'property of it is
illustrated by the method which is wmg&glgﬁq}.ﬁgl gke
such a surface. The method is to take¥hree surfaces and grind
them down until any two will fit,oné another all over. Sup-
pose the three surfaces to be &3 B, ¢; then, since a will fit B,
it follows that the space outgide 4 is of the same shape as the
space inside B; and becauge B will fit ¢, that the space inside
B is of the same shape ds the space outside ¢. It follows there-
fore that the space tutside 4 is of the same shape as the space
outside ¢. But since A will fit ¢ when we putb them together,
the space insidé’a is of the same shape as the space outside c.
But the spage-outside ¢ was shown to be of the same shape
as the spads outside A; consequently the space outside 4 is
of the{game shape as the space inside; and so, if three sur-
fageSare ground together so that each pair of them will fit,
(edeh of them becomes a surface which is of the same shape
on both sides: that is to say, if we take a body which is partly
bounded by a plane surface, we can slide it all over this sur-
face and it will fit everywhere, and we may also turn it
round and apply it to the other side of the surface and it will
fit there too. This property is sometimes more technically
expressed by saying that a plane is a surface which divides
Space into two congruent regions.

A straight line may be defined in a similar way. It is a
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divigion between two parts of a plane, which two parts are,
so far as the dividing line is concerned, of the same shape;
or we may say what comes to the same effect, that a straight
line is a line of the same shape all along and on both sides.

A body may have two plane surfaces; one part of it, that
is, may be bounded by one plane and another part by an-
other, If these two plane surfaces have a common edge, thig,
edge, which is called their ntersection, is a straight line. Ve
may then, if we like, take as our definition of a straigit lme
that it is the intersection of two planes. A

Tt must be understood that when a part of the\surface of
2 body is plane, this plane may be conceivedfgis’ extending
beyond the body in all directions. For instamee, the upper
surface of a table is plane and horizontdl) Now it is quite
an intelligible quejstign 1o ask about, & point which is any-
where K TP TSR SRethor it is higBerror lower than the sur-
face of the table. The points whigh are higher will be divided
from those which are lower bynan' imaginary surface which i8
a continuation of the planetsurface of the table. So then we
are at liberty to speak of'the line of intersection of two plane
surfaces of a body whether these are adjacent portions of
surface or not, and\we may in every case suppose them to
meet one anothétand to be prolonged across the edge in
which they meet,
Leibniz,(who was the first to give these definitions of a
plane andof a straight line, gave also another definition of
a stl:af}g\ht line. If we fix two points of a body, it will not be
entirely fixed, but it will be able to turn round. AH poeints of
< i‘b will then change their position excepting those which are

In the straight line joining the two fixed points; and Leibniz
accordingly defined a straight line as being the aggregate
of those points of a body which are unmoved when it i8
turned about with two points fixed. If we suppose the body
w-have a plane face passing through the two fixed points,
this definition will fall back on the former one which defines
a straight line as the intersection of two planes.

It hardly needs any words to prove that the first two defi-
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nitions of 2 plane are equivalent; that is, that two surfaces,
each of which is of the same shape all over and on both sides,
will have for their intersection a line which is of the same
shape ail along and on both sides. For if we slide each plane
upon itseif it, will, being of the same shape all over, occupy
as 2 whole the same unchanging position (i.e. wherever there
was part of the planes before there will be part, though &>
different part, of the planes now), so that their line of imter-
section occupies the same position throughout (though the
part of the line occupying any particular position\is differ-
ent). The line is therefore of the same shape albalong. And
in a similar way we can, without changing-the position of
the planes as a whole, move them so that the right-hand
part of each shall become the left-ha dypart, and the upper
part the lower; and this will amg Jobehanging dhgdine
of intersection end for end. But tHigline is in the same place
after the change as before; andit is therefore of the same
shape on both sides. R \\

From the first definition we see that two straight lines
cannot coincide for a éertain distance and then diverge from
one another. For &ince the plane surface is of the same
shape on the twa sides of a straight line, we may take up the
surface on ang %ide and turn it over and it will fit the sur-
face on the‘other side. If this is true of one of our supposed
Sti‘aig%ﬁnes, it is quite clear that it cannot at the same
time Bet1

betrue of the other; for we must either be bringing over
mofe to fit less, or less to fit more.

§6. Properties of Triangles

We can now reduce to a more precise form our first ob-
?ervation about space, that a body may be moved about in
it without altering its size or shape. Let us suppose that our
body has for one of its faces a triangle, that is to say, the
portion of a plane bounded by three straight lines. We find
that this triangle can be moved into any Dew position thgt
we like, while the lengths of its sides and its angles remam
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the same; or we may put the statement into the form that
when any triangle is once drawn, another triangle of the
same size and shape can be drawn in any part of space.

From this it will follow that if there are two ftriangles
which have a side of the one equal to a side of the other, and
the angles at the ends of that side in the one cqual to the,
angles at the ends of the equal side in the other, then the
two triangles are merely the same triangle in different ‘post-
tions; that is, they are of the same size anl shape.,l*lo\r if we
take the first triangle and so far put it into the(pasition of
the second that the two equal sides coincidey then because
the angles at the ends of the one are respec‘ﬁifely equal o
those at the ends of the other, the remainihg two sides of the
first triangle will begin to coincide qu:h\ the remaining two
sides ngt lga%q%l}gl‘&‘ﬁ.ggnwe havelséen that straight lines
cannot "Bégin to edineide andithén diverge; and conse-
quently these sides will coincide'throughout and the triangles
will entirely coineide. ’

Our second observation,'that we may have things which
are of the same shapeibut not of the same size, may also be
made more preciselby application to the case of triangles.
3% tells us that Any {riangle may he magnified or diminished
to any degreg(®ithout altering its angles, or that if a triangle
be drawnganother triangle having the same angles may be
drawn ¢f\any size in any part of space.

Frony this statement we are able to deduce two very im-
pg{ft?.nt consequences. One is, that two straight lines can-

¢~hot mtersect in more points than one; and the other that,
if two straight lines can be drawn in the same plane so as
not to intersect at all, the angles they make with any third
line in their plane which meets them, will be equal.

To prove the first of these, let 4  and a ¢ (Fig. 30) be two
straight lines which meet at 4. Draw a third line B ¢, meet~

1 T}IIS. proposition, like many others of Euclidean genmetry involving
Sflpe&pogltsoﬂ_: tannot be proved except, in three dimensions. The manipula-
f;lon of certain types of congruent triangles revesls the fact that to super-
Impose one upon the other, it is necessary to lift one of the iriangles out of the
plane ang furn i over before superposition is pesgible—J RN,
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ing both of them, and the three lines then form a triangle.
1f we now make a point p travel along the line A B it must,
in virtue of our second observation, be always possible to
draw through this point a line which shall meet 4 ¢ in q so
as to make a triangle 4 P g of the same shape as A B . Bub

ﬂQﬁc\ N
A PB D O

F1a. 30 '\

if the line 2 ¢ were to meet a B in some other pointip besides
A, then through this point p it would clearly¢not be possible
to draw a line 80 as to make a triangle at all! It follows then
that such a point as b doeS not exist, and in fact that two
straight lines which have once m@ﬂ@g}}g&gﬂag}}y%&%&fﬁg
from each other and can never yiest again.' '

To prove the second, supposge that the lines A ¢ and B8 D
(Fig. 31) are in the same plaug, and are such a3 never fo meet

.i'"g Q G

\<& B D
N Fre. 31

at all\{i“};’which case they are called parallel), while the line
A B\meets them both. If we make a point P travel along B 4
. towards A, and, as it moves, draw through it always a line
(_making the same angle with B A that B D makes with B 4,
then this moving line ean never meet a ¢ until it wholly
eoincides with it. For if it can, let » @ be such a position of
the moving line; then it is possible to draw through B a line
which, with 4 B and A ¢, shall form a triangle of the same
shape as the triangle 4 p . But for this to be the case the line
! This property might also be deduced from the first definition of & straight

li_ne, by the method already used to show that two straight lines cannot ¢oin-
cide for part, of their length and then diverge.
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drawn through B must make the same angle with A 5 that
P Q makes with it, that is, it meust be the line 5 ». And the
three lines B D, B A, A ¢ cannot form a triangle, for B » and
A ¢ never meet. Consequently there can be no such triangle
as A P Q, or the moveable line can never meet o ¢ until it
entirely coincides with it. But since this line always makes
with B A the same angle that B » does, and in one position
coineides with A ¢, it follows that A ¢ makes with 3 A tbe
same angle that B » does. This is the famous profigsition
about parallel lines.! N

The first of these deductions will now show us)that if two
triangles have an angle of the one equal tolah angle of the
other and the sides containing these ahgles respectively
equal, they must be equal in alt partieufars. For if we take
up one of the triangles and put it down on the other so that
these a¥lEs EHHBIY AT equal sidés are on the same side
of them, then the containing(sides will begin to coincide,
and cannot therefore afterwards diverge. But as they are of
the same length in the one'triangle as they are in the other,
the ends of them belonging to the one triangle will rest upon
the ends belonging\qﬁfhe other, so that the remaining sides
of the two triapgles will have their ends in common and
must therefor®; toincide altogether, since otherwise two
straight linés)would meet in more points than one. The one

t Twﬁ’\éf..l:ﬁight lines which cut one another form at the point where they
crosg fdur angles which are equal in pairs. Tt is often necessary to distinguish

betWeen the two different _aﬂglm which the lines make with one ancther. This
m‘f fhn*’ by the understanding that A ® shall mean the line drawn from 4 t0 8,

?mtihB 4 the line drawn from = to 4, €0 that the angle between 4 B and ¢ p ()
is S: angle & o D, but the sngle between B 4 and ¢ (ii) is the angle b O A.
the angle epoken of shove as made by 4 ¢ with ® 4 i3 not the angle ¢ A B

{which is clearly, in general, un
s ¥ » unedqusl to the an, ) R
whete E i3 4 point in B A produced t} gle D B &), but the angle c A B,
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triangle will then exactly cover the other; that is to say,
they are equal in all respects.

In the same way we may see that if two triangles have
two angles in the one equal to two angles in the other, they
are of the same shape. For one of them can be magnified or
diminished until the side joining these two angles in it be-
comes of the same length as the side joining the two cor-
responding sngles in the other; and as no alteration is thereby
made in the shape of the triangle, it will be enough for, p’s'ﬁo
prove that the new triangle is of the same shape as the.ather
given triangle. But if we now compare these twlo, \we see
that they have a pair of corresponding sides which‘have been
made equal, snd the angles at the ends ofthiese sides equal
also (for they were equal il the original rizhgles, and have
not been altered by the change of S_W%ﬁﬂrts%ﬁ%g?yfﬁug back
on a case already considered, in whiehdt was shown & 4t the
third angles are equal, and the\triangles consequently of
the same shape. R\,

If we apply these propositions not merely to two different
triangles but to the samé\riangle, we find that if & triangle
has two of its sides equal it will have the two angles opposite
to them also equal ®and that, conversely, if it has two angles
equal it will hayé the two sides opposite to them also equal;
for in each offhese cases the triangle may be turned over
and made 0Bt itself. Such a triangle is called 7sosceles.

The thiborem about parallel lines which we deduced from
our setond assumption about space leads very easily to a
,ﬁhesirehl of especial importance, viz. that the three angles of
{aftfiangle are together equal to two right angles.

E/A\D
B C
Fig. 32

If we draw through 4, a corner of the triangle A B C (Fig.
32), a line p 4 &, making with the side A ¢ the same angle as
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B ¢ makes with it, this line will, as we have proved, never
meet B ¢, that is, it will be parallel toit.! It will consequentiy
make with 4 B the same angle as B ¢ makes with it, so that
the three angles A B ¢, B A ¢, and B ¢ A are respectively equal
to the angles £ A B, B A ¢, and ¢ A D, and these three make
up two right angles,

Another statement of this theorem is sometimes of use.

If the sides of a triangle be produced, what are called.the
exterior angles of the triangle are formed. If, for example,
the side B c of the triangle A B ¢ (Fig. 33) is produced heyond
¢ to D, A € D is an exterior angle of the triangle,(While of the
interior angles of the triangle A ¢ B is saldfo be adjocent,
and ¢ 4 B and A B ¢ to be opposite to thisexterior angle. It is
clear that as each side of the triangle&’n\lay be produced in

two directions, any tl‘iang,e has six.ezterior angles.
www.dbraulibrary.org.1n N
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Tito whi '
. The other form iftto which our proposition may be thrown
is that eithel:.\of ‘the exterior angles of a triangle is equal to
the sum of the two interior angles opposite to it. For, in the
figure, the‘exterior angle A ¢ », together with 4 ¢ B, makes
two tight angles, and it must therefore be equal to the sum
of é;he two angles which also make up two right angles with

~&. 0 B.

aml Thls“' 12 mat what Clifford proved before, He proved that if two lines are
parallel the corsesponding angles are equal; which is not the equivalent of the

proposition that if the corresponding angles {or al interi es) are
equal, the two lines are gles {or alternate interior angles)

true—J.R.N. parallel. It happens that both propositions are

® The convention mentioned in footnote 1 on page 66 must be remembered.
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§7. Properties of Circles; Related Circles and Triangles

We may now apply this proposition to prove an impor-
tant property of the circle, viz. that if we take two fixed
points on the circumference of a circle and join them to a
third point on the circle, the angle between the joining lines
will depend only upon the first two points and not at.alk
upon the third. If, for example, we join the points A, B
(Fig. 34) t0 ¢ we shall show that, wherever on the giteuin-
ference ¢ may be, the angle A c B is always one-balf ofa 0 B;
o being the centre of the circle. "%

Let ¢ o nroduced meet the circumference i{}'p.’Then since
the triangle o 4 c is isosceles, the angles A€ and o ¢ 4 are
equal, and so for a similar reason are theangles 0 B C and
ocCh, \a‘rww_dbraulibl'ary.org.in

But we have just shown that thevexterior angle A 0 D is
equal to the sum of the anglesig-a ¢ and o ¢ a; and since
these are equal to one another it must be double of either
of them, say of 0 ¢ A. Sindilarly the angle B o D is double of
0 ¢ B, and consequentlf™ o B is double of 4 ¢ B.

In the case of thedirst figure (i) we have taken the sum of
two angles each ofuwhich is double of another, and asserted
that the sum of bhe first pair is twice the sum of the second

pair; in the’odse of the second figure (i) we have taken the
N\

difference of two angles each of which is double of another,
and asserted that the difference of the first pair is twice the
differcnce of the second pair.

Since therefore 4 ¢ B is always half of A 0 B, wherever C



70 Cuarter Il : Srack

reay be placed in the upper of the two segments into which
the circle is divided by the straight line A B, we see that the
magnitude of this angle depends only on the positions of A
and B, and not on the position of ¢. But now let us consider
what will happen if ¢ is in the lower segment of the cirele.
As before, the triangles 0 A ¢ and o & ¢ (Fig. 35) are isosceles,
and the angles D 0 4 and p 0 B are respectively double-o{™
o ¢ 4 and o ¢ B. Consequently, the whole angle 4 o B formed
by making o A turn round © into the position o 1, 86, asto
pass through the position o D (in the way, that is,\in"“which
the hands of a clock turn), this whole angle is dpublé'of ACB.
By our previous reasoning the angle a B, formed by
joining A and B to », is one-half of the anglé"X o B, which is
made by furning o B towards o 4 as the“hands of a clock
move. [Lhe sprachitiresertwo angles,each of which we have
denoted by A o B, is a complete révolution about the point
0; in other words, is four right asgles. Hence the sum of the

B
O E

2 &

Fic. 35

_8agles 4 0B, A ¢ B, which are the halves of these, is two right
<_atigles. Or we may put the theorem otherwise, and say that

the opposite angles of a four-sided figure whose angles
lie on the circumference of a circle are together equal to two
right angles.

We appear therefore to have arrived at two different state-
ments according as the point ¢ is in the one or the other of
the segments into which the circle is divided by the straight
line A B. But these statements are really the same, and it is
easy to include them in one proposition. If we produce A €
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in the last figure to £, the angles A ¢ B and B CE are together
equal to two right angles; and consequently B ¢ E is equal to
A » B. This angle B ¢ E is the angle through which ¢ B must
be turned iz the way the hands of a clock move, so that its
direction may coincide with that of & c. But we may describe
in precisely the same words the angle A ¢ B in Fig. 34, where
¢ was in the upper segment of the circle; so that we mayy
always put the theorem in these words:—If A and B are
fived points on the circumference of a circle, and ¢ any,gﬂiér
point on it, the angle through which ¢ B must be turned
clockwise in order to coincide with c A or A G, whichever hap-
pens first, is equal to half the angle through which o B must
be turned clockwise in order to coineide with'e A.

We shall now make use of this to prove,agother interesting
proposition. If three points b, E, F @M@)ﬂut(ﬁ)taken on the

Tary.org.in
A « \

.\“" Fic. 36

sides df; triangle A B ¢, D being on B ¢, E 0L C 4, F O A B,
thén three circles can be drawn passing respectively through
SAFE, BDF, ¢ E D. These three circles can be shown to meet
in the same point o. For let o in the first place stand for the
intersection of the two circles A ¥ E and BT D; then the angles
F A% and ¥ 0 & make up two right angles, and so do the
angles p o F and » B 7. But the three anglesat 0 make four
right angles, and the three angles of the triangle A B ¢ make
two right angles; and of these six angles two pairs have been
shown to make up two right angles each. Therefore the re-
maining pair, viz. the angles D 0 E and p c E, make up two
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right angles. It follows that the circle which goes through
the points ¢ & p will pass through o, that is, the three circles
all meet in this point.!

There is no restriction imposed on the positions of the
points D, E, F,2 they may be taken either on the sides of the

N\ Fic. 87

triangle 01;,{;&1’ ‘those sides produced, and in particular we
may takethem to lie on any fourth straight line o & ¥; and
the ‘gkkegh’ém may be stated thus:—1If any four straight lines
be .jﬁken (Fig. 37), oue of which meots the triangle Ao B €
:fg?ﬁned by the other _three in the points b, &, ¥, then the
\”\3 eircles through the points o ¥ 5, 8 D ¥, ¢ & p meet in a point.
But there is no reason why we should not take 4 ¥ & as the

* Clifford again avails himself of the converse of a theorem when all be has

proved, in fact, Is the theorem itsolf. If y quadrilateral is inseribed in a circle,

t‘nc__m the sum of the opposite angles is equal to two right angles. This is what

QllHord proved earlier. The converse, X

(e, i the sum of the opposite angles of a guadrilateral equals two right

angles, t‘he quadrilsteral can be inseribed in g cirele), was nut proved.—J. RN
2 If either of the pointz o, 8, 7, i3 takeo on a side produeed, {he proof given

ab 1 e e i
.;btg:u;ﬂll not apply literally; but the necessary changes are stight and

on which the present theorem rests
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triangle formed by three lines, and the fourth line p ¢ B a8
the line which cuts the sides of this triangle. The proposi-
tion is equally true in this case, and it follows that the circles
through 4 8 ¢, ¥ ¢ 0, F B D will meet in one point, This must
be the same point as before,! since two of the cireles of this
set are the same as two of the previous set; consequently all
four circles meet in a point, and we can now state our prop={
osition as {ollows: O\

(iven four straight lines, there can be formed fromy-{hem
four triangles by leaving out each in turn; the cirglés-which
cireumscribe these four triangles meet in a poing,

This proposition is the third of a series. \J

If we take any two straight lines they détermine & point,
viz. their point of intersection. \\

If we take three straight Jines we\ge}f}chﬂmﬁﬂfii-)poighﬁ of
intersection; and these three detérmine a circle, viz. the
circle circumseribing the triangld formed by the three lines.

Four straight lines deternune four sets of three lines by
leaving out each in turn; and the four circles belonging to
these sets of three meef in a point.

In the same way, five lines determine five sets of four, and
each of these sets)}f four gives rise, by the proposition just
proved, to a paint. Tt has been shown by Miquel, that these
five points lieon the same circle.

And $li¥sScries of theorems has been shown® to be endless.
Six Sﬁff;ik_ht lines determine six sets of five by leaving them
out.bne by one. Each set of five has, by Miquel’s theorem, a

«irdle belonging to it. These six circles meet in the same

point, and so on for ever. Any even number (2n) of straight
lines determines a point as the intersection of the same num-
ber of circles. If we take one line more, this odd number
(2 + 1) determines as many sets of 2 lines, and to each of
these sets helongs a point; these 2n + 1 points lie on a circle.

! The inference is not quite correct, Since two circles may intersect in twO
Points, not merely in one, there is an ambiguity in the text, which, however,
m DO way vitiates the result.—J.R.N.

* By Prof, Clifiord himself in the Oxford, Cambridge, and Dublin Messenger
of Mathematics, vol. v. p. 124. Sce his Mathematical Popers, pp- 51-54.
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§8. The Conic Sections

The shadow of a circle cast on a flat surface by a lumi-
nous point may have three different shapes. These are three
curves of great historic interest, and of the utmost impor-
tance in geometry and its applications. The lines we have S0\
far treated, viz. the straight line and circle, are special cases
of these curves; and we may naturally at this point investi-
gate a few of the properties of the more general formga

Ii a circular disc be held in any position so thait is al-
together below the flame of g candle, and its shiddow be al-
lowed to fall on the table, this shadow will be of an oval
form, except in two extreme cases, in onévof which it also
is a circle, and in the other is 4 straightJine. The former of
these cases hanpans.whenithe disc$d held parallel to the
table, and the latter when the disé.is held edgewise to the
candle; or, in other words, is 6 placed that the plane in
which it lies passes throughthe luminous point. The oval
form which, with these two e%iéeptions, the shadow presents is
called an ellipse (Fig. 38.'\{)- The paths pursued by the planets
round the sun are of 4hiS form,

A\

(i)
N

e) X
\ )
(i)
{iv)

Fic, 38

_ If the circular dise be now held so that its highest point is
Just on a level with the flame of the candle, the shadow will
as before be oval at the end near the candle ; but instead of
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closing up into another oval end as we move away from the
candle, the two sides of it will continue to open out without
any limit, tending however to become more and more paral-
Jel. This form of the shadow is called a parabola (ii). It is
very nearty the orbit of many comets, and is also nearly
represented by the path of a stone thrown up obliquely. If
there were ne atmosphere to retard the motion of the stone™
it would exactly describe a parabola. A

If we now hoid the circular disc higher up still, so that’a
horizontal plane at the level of the candle flame divides it
into two parts, only one of these parts will cast gnyshadow
ab all, and that will be a curve such as is shows.in the figure,
the two sides of which diverge in quite different directions,
and do not, as in the case of the parabgla, tend to become
parallel {ii1). \irw}vfdbraulibl'ary.org.in

But although for physical purpases this curve i the whole
of the shadow, yet for geometrical purposes it is not the
whole. We may suppose thatinstead of being & shadow our
curve was formed by joiniig the luminous point by straight
lines to points roundthe edge of the dise, and producing
these straight lines Aintil they meet the table.

This geometricalMmode of construction will equally apply
to the part ofstHe circle which is above the candle flame,
although ¢, ab does not cast any shadow. If we join these
points_of<the circle to the candle flame, and prolong the
jOiDjRg\\ﬁﬁes beyond it, they will meet the table on the other
sidecof the candle, and will trace out a curve there which is

~Exactly similar and equal to the physical shadow (iv). We
may call this the anti-shadow or geometrical shadow of the
circle. Tt is found that for geometrical purposes these two
branches must be considered as forming only one curve,
which is called an hyperbola. There are two straight lines to
which the curve gets nearer and nearer the further away it
goes from their point of intersection, but which it never
actually meets. For this reason they are called asymptotes,
f}‘Om a Creek word meaning ‘‘not falling together.” These
lines are parallel to the two straight lines which join the
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candle flame to the two points of the circle which are level
with it.

We saw some time ago that a surface was formed by the
motion of a line, Now if a right line in its motiocn always
passes through one fixed point, the surface which it traces out
is called a cone, and the fixed point is called its verfex. And
thus the three curves which we have just deseribed are called,
conic sections, for they may be made by cutting a cone byna
plane. In fact, it is in this way that the shadow of the ‘eicle
is formed; for if we consider the straight lines which join
the candle flame to all parts of the edge of the sircle we see
that they form a cone whose vertex is the candlé flame and
whose base is the circle. )

We must suppose these lines not to end 'at the flame but
to be prolonged. throwghoi iand we sh\sﬂ)‘ so get what would
commonly be called two cones with’their points together,
but what in geomeiry is called, gne conical surface having
two sheets. The section of thig“conical surface by the hori-
zontal plane of the table is¢he shadow of the circle; the sheet
in which the eircle lies givé’s’ us the ordinary physical shadow,
the other sheet (if thé\plane of section meets it) gives what
we have called thgig=ometrical shadow.

The consideration of the shadows of curves is a method
much used {oP’fittding out their properties, for there are cer-
tain geometrical properties which are always common to &
figure al}d its shadow. For example, if we draw on a sheet
of glgss'two curves which cut one another, then the shadows
of-fhe two curves cast through the sheet of glass on the table
{Nﬁl also cut one another. The shadow of a straight line is
always a straight line, for all the rays of light from the
flame through various points of a straight line lie in a plane,
and this plane meets the plane surface of the table in 2
gtraight line which is the shadow. Consequently if any curve
15 cut by a straight line in & certain number of points, the
s}xa.dpw of the curve will be cut by the shadow of the straight
line n the same number of points. Since a circle is cut by 2
straight Lire in two points or in none at all, it follows that
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any shadew of a circle must be cut by a straight line in two
points or in none at all.

QY
O\
NS ©
Fra. 39 'M.'\('
When a straight line touches a circle ‘the' two points of
Intersection coalesce into one point. ‘see then that this

W 3,

must also be the case with any shsﬁf}w SF aﬁﬁ@'ﬁ?ﬁl&f'&@gain,
from & point outside the cirele ityIs possible to draw two
lines which touch the circle; so¥ftom a point outside either
of the threc curves which wethave just described, it is possi-
ble to draw two lines to telieh the eurve. From a point inside
the circle no tangentédn be drawn to it, and accordingly
o tangent can be driwn to any conic section from a point
inside it. L\

This method/of deriving the properties of one curve from
those of andtfiér of which it is the shadow, is called the
method .Qﬁt;(}\:;bjecﬁ'ion.

Thelparticular case of it which is of the greatest use is
that b Which we suppose the luminous point by which the

. Shfidbw 1s cast to be ever so far away. Suppose, for example,
that the shadow of a circle hold obliquely is cast on the table

by a star situated directly overhead, and at an indefinitely
great distance. The lines joining the star to all the points
of the circle will then be vertical lines, and they will no
longer form a cone but a cylinder. One of the chief advan-
tages of this kind of projection is that the shadows of two
Parallel lines will remain parallel, which is not generally the
ase in the other kind of projection. The shadow of the
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circle which we obtain now is always an ellipse; and we are
able to find out in this way some very important properties
of the curve, the corresponding properties of the eircle being
for the most part evident at a glance on aceount of the sym-
metry of the figure.

www\dbl. -g%graryorg-m ) \‘\‘\“
RS S hwe v
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For instance, let us syppose that the circle whose shadow
we are examining iy vertical, and let us take a vertical di-
ameter of it, so thaf\the tangents at its ends are horizontal.
It will be clearfrom the symmetry of the figure that all
horizontal lines’in it are divided into two equal parts by
the verticdl diameter, or we may say that the diameter of
thescircle)bisects all chords parallel to the tangents at its
faxtg%trﬁties. When the shadow of this figure is cast by an
mﬁ;gtely distant star (which we must not now suppose to
be dlr:ectly overhead, for then the shadow would be merely

a st?a.:ght line}, the point of bisection of the shadow of any
straight line is the shadow of the middle point of that line,
and thus we learn that it is true of the ellipse that any line
which joins the points of contact of parallel tangents bisects
all chords parallel to those tangents. Such a line is, as in the
case of the circle, termed a diameter. Since the shadow of &
diameter gf the circle is a diameter of the ellipse, it follows
that all diameters of the ellipse pass through one and the
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same point, namely, the shadow of the centre of the circle;
this common intersection of diameters is termed the centre
also of the eliipse.

Again, a Liovizontal diameter in the circle just considered
will bisect all vertical chords, and thus we see that if one
diameter bisects all chords parallel to a second, the second
will bisect all chiords parallel to the first. \

The method of projection tells us that this is also true\of
the ellipse. Such diameters are called congugate digmsters,
but they are no longer at right angles in the ellipse a8 they
were in the case of the circle. N

Since the shadow of a, circle which is cast in .tfli‘s way by an
infinitely distant point is always an ellipsé\we cannot use
the same method in order to obtain the.properties of the
hyperbola. But it is found by other metliods that these same
statements are true of the hyperbély Wby werhase. just
seen t0 be true of the ellipse. There is however this great
difference hetween the two curﬁifes. The centre of the sllipse
is inside it, but the centrevef the hyperbola is outside it.
Also all lines drawn through the centre of the ellipse meet
the curve in two points; but it is only certain lines through
the centre of the hsé\é’rbola which meet the curve at all, Of
two conjugate diameters of the hyperbola ope meets the
curve and the @ther does not. But it still remains true that
each of them biseets all chords parallel to the other.

§9. On Surfaces of the Second Order
y '*{W’e began with the consideration of the simplest kind of

lire and the simplest kind of surface, the straight line and the
Plane; and we have since found out some of the properties
of four different curved lines—the circle, the ellipse, the
barabola, and the hyperbola. Let us now consider some
curved surfaces; and first, the surface analogous fo the
circle. This surface is the sphere. It is defined, as a circle is,
by the property that all its points are at the same distance
from the centre.

&
ay
NN
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Perhaps the most important question to be asked about
a surface is, What are the shapes of the curved lines in which
it is met by other surfaces, especially in the case when these
other surfaces are planes? Now a plane which cuts a sphere
cuts it, as can easily be shown, in a circle (Fig. 41}. This cirele,

Fre. 41 N

as we move the plane further and furtheraway from the
centre of the sphere, will get smaller and smaller, and will
finally contract into a point. In this cgsg%l’ie plane is said to
touch the sphere; and w ice a very-ebvious but important
fact, thit’ f’ﬁéms?i) g%yt%fgr? 1élies entirely on one side of the
plane. If the plane be moved afill further away from the
centre it will not meet the sphére at all.

Again, if we take a pointioutside the sphere we can draw
a number of planes to p&ss through it and touch the sphere,
and all the points in,v'g'{&ch they touch it lie on a circle. Alse
& cone can be drpﬁh whose vertex is the point, and which
touches the sphére all round the circle in which these planes
touch it (FI’E \9). This is called the tangeni-cone of the point.

Fig, 42

It is clear that from a point inside the sphere no tangent-
cone can be drawn.
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Bimitar properties belong also to certain other surfaces
which regsemble the sphere in the faet that they are met by a
straight line in twe points at most; such surfaces are on this
account calied of the second order.

Just as we may suppose an ellipse to be got from a circle
by pulling it out in one direction, so we may get a spheroid
from a sphere either by pulling it out so as to make a thing®
like an egg, or by squeezing it so as to make a thing lilie\an
orange. Hach of these forms is symmetrical about one-diame-
ter, but not about all. A figure like an orange, for'example,
or like the earth, has a diameter through its peles Iess than
any diameter in the plane of its equator, budall diameters
in its equator are equal. Again, a spheroldMike an egg has
all the dizmeters through its equator egiral to one another,
but the diameter through its polesJd8donkerdthanranyother
diameter. O

If we now take an orange or.an ‘egg and make its equator
nto an eilipse instead of a.eircle, say by pulling out the
equator of the orange or sqileezing the equator of the egg, so
that the surface has neWw three diameters at right angles all
unequal to one angtlier, we obtain what is called an ellipsoid
(Fig. 43). This Slgr\fﬁ}ce plays the same part in the geometry

A

Elipsoid Spheroid
None of the three The two principle
principle axes are axes labelled o are
equal. equal,

F1e. 43

of surfaces that the ellipse does in the geometry_ of curves.
Just a5 every plane which euts a sphere cuts it in a circle,
S0 every plane which cuts an ellipsoid cuts it in an ellipse.
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It is indeed possible to cut an ellipsoid by a plare so that
the section shall be a circle, but this must be regarded ag a
particular kind of ellipse, viz. an ellipse with two equal axes.
Again, just as was the case with the sphere, we can draw a
set of planes through an external point all of which touch
the ellipsoid. Their points of contact lie on a certain ellipse,
and a cone can be drawn which has the external point for itg\
vertex and touches the ellipsoid all round this ellipze. The
ellipsoid resembles a sphere in this respect also, that! qrhen
it is touched by a plane it les wholly on one &de ‘of that
plane.

There are also surfaces which bear to the, hyperbois, and
the parabola relations somewhat similar o those borne to
the cirele by the sphere, and to the ellip\’se by the ellipsoid.
We will.nosegonsidey @gdnrof therg, ‘Q ‘surface with many
singular properties.

Tet o B ¢ » be a figure of card-board having four egual
sides, and let it be half cut through all along B D, so that the
triangles A B D, ¢ B D can_tun about the line 8 p. Then let
holes be made a,long thefour sides of it at equal distances,
and let these holes be joined by threads of sillkc parallel to
the sides. If now th figure be bent about the line B D and
the silks are pulled tight it will present an appearance like
that 1 Fig, &4 resembling a saddle, or the top of 4 moun-
tain pass./H™

ThJs\smfaee is composed entirely of straight lines, and
therelare two sets of these straight lines; one set which was
01‘151113»113’ paralle! to A B, and the other set which was origi-
{nmally parallel to a .

A section of the figure through 4 ¢ and the middle point of
B D will be a parabola, with its concave side turned upwards
(Fig. 45).

A section through B » and the middle point of 4 ¢ will be
another parabola with its concave side turned downwards,
the common vertex of these parabolas being the summit of
the pass.

The tangent plane at this point will cut the surface in two
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parabola (concave
down)

Fia. 45

straight lines, while part of the surface will be above the tan-
gent plane and part below it (Fig. 46). We may regard this
tangent plane as a horizontal plane at the top of a mountain
pass. Tf we travel over the pass, we come up of one side to
the level nf +ha wlane and then go down o the other. But if
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Fia. 486. The tangent plane 7 at P cuts the su.iii;ce '
in the two straight lines a and 87\

we go down from a mountain on the right and go up the
mountain on th ‘gefg we shall alwiags\)e above the hori-
zontal ﬁf‘é‘ﬁgbﬁusécﬁo%oﬁr a horizondal plane a little sbove
this tangent plane will be hyp,erbb"la whose asymptotes will
be parallel to the straight lipésin which the tangent plane
meets the surface (Fig. 47), A'section by a horizontal plane a

F1a. 47

little below will also be a hyperbola with its asymptotes par-
allel to these lines, but it will be situated in the other pair
of angles formed by these asymptotes. If we suppose the cut-
ting plane to move downwards from a position above the



How to form Curves of the Third and Higher Orders 85

tangent plane (remaining always horizontal), then we shall
see the two branches of the first hyperbola approach one
another and get sharper and sharper until they meet and
become simply two crossing straight lines. These lines will
then have their corners rounded off and will be divided in
the other dirceiion and open out into the seeond hyperbola.
This Jeads 113 to suppose that a pair of intersecting straight.
lines is only a particular case of a hyperbola, and that, we
may consider the hyperbola as derived from the two cressing
straight lines by dividing them at their point of intefsection
and rounding off the corners.

§10. How to form Curves of the Third (M’{d Higher Orders

A

The method of the preceding parageiph, may be extended
80 as to discover the forms of new eupves v putiing EHdwn
twrves fogether. By a mode of expression which sounds
Paradoxieal, vet is found con\fénjént, a straight line is called
8 eurve of the first order, bég&aﬁse it ean be met by another
straight line in only one~point; but two straight lines taken
together are called a cifrve of the second order, because they
tan be met by a s '.‘gilt line in two points. The circle, and
its shadows, thePellipse, parabola, and hyperbola, are also
called curves\of’fhe sceond order, because they ean be met
by a straighf\Jine in two points, but not in more than two
boints; gdt‘we see that by this process of rounding off the
tornerg'ad the method of projection we can derive ail these
urvgsiof the second order from a pair of straight lines.
o~ Asimilar procoss enables us to draw curves of the third
rder. An ellipse and a straight line taken together form a
Jurve of the third order. If now we round off the corners at
both the points where they meet we obtain (Fig. 48) a curve
consisting of an ova) and a sinuous portion called a “smnake.”

OW just as when we move a plane which cuts a sphere
aWay from the centre, the curve of intersection shrinks up
o 2 point and then disappears, so We can vary our curve
of the third order so as to make the oval which belongs to
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[t (i) (iii) K¢
Fra. 48 o\

{iy Full loap and snake, " (iii) The loop hasd sh;runk to a point.
(i) Shrunk loop and snake. (iv) Snzke QQ;\[;

it shri%wq%bi%ﬁ?ip%aﬁﬁ?@ﬁn@nd tk}&F}disapp-ear a%togethe.r,
leaving only the sinuous part, buf no vartation will get rid
of the ““snake.”

We may, if we like, only;i:"ﬁhd off the corners at one of

the intersections of the straight line and the ellipse, and we
then have a curve of t,l\aé third order crossing itself, having a

) Gi) (i} Gv)
Fig, 49

knot or double point (Fig. 49); and we can further suppose

this loop to shrink up, and the curve will then be found to
have a sharp point or cusp.
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It was shown by Newton that all curves of the third order
might be derived as shadows from the five forms which we
have just raentioned, viz. the oval and snake, the point and
snake, the snale alone, the form with a knot, and the form
with a cusp.

In the same way curves of the fourth order may be got,

by eombining together two ellipses. If we suppose them to’
2\ \

: \:-"\}ws.'dbraulibr "y, i
Fra. 50 A\ yoTgn

eross each other in four points wé) may round off all the cor-
hers at once and s0 obtain two ‘different forms, either four
ovals all outside one another or an oval with four dints in it,
and another oval inside > db.(Fig. 50).

But the number of forms of curves of the fourth order is
%0 great that it haﬁ&aever yet been completely catalogued;
and curves of hlgher orders are of still more varied shapes.



CHAPTER II1

Quantity

2N

§1. The Measurement of Quantities O

We considered at the beginning of the first, chapt’le}‘s da Num-
ber, the process of counting things which are’ﬁe\parz«;te frc.lncl1
one another, such as le or men or sheep, and we foun
it to Bo'a “ﬁ%ﬁﬂ%@ﬁ&%ﬁipeﬁy of thiﬁ\\cbinting that the
result was not affected by the ordewitt which the things to
be counted were taken: that one 60the things, that is, was
as good as another at any stagelof the process.

We may also count things $hich sre not separate but all
in one piece. For example;swe may say that a room is six-
teen feet broad. And 1§ order to count the number of feet
in the breadth of this room we should probably take a foot
rule and measure first a foot close to the wall, then an-
other beginning-Avhere that ended, and so on uniil Wwe
reached the :o\pposite wall. Now when these feet are thus
marked zuf.i'.\they may, just like any other separate things,
be cm\lﬁted in whatever order we please, and the number of
themi,will always be sixteen.

~(But this is not all the variety in the process of counting
N\Jwhich js possible. For suppose that we take a stick whose
length is equal to the breadth of the room. Then we may cut
out a foot of it wherever we please, and join the ends 10-
gether. And if we then cut out another foot from any part of
the remainder and join the ends, and repeat the process
fifteen times, we shall find that there will always be a foot
length left when the last two cnds are joined together. So,
when we are counting things that are all in one piece, like
38
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the length of the stick or the breadth of the room, not only
is the order in which we count the feet immaterial, hut also
the position of the actual feet which we count.

Again, f we 2ay that a packet contains a pound, or six-
teen ounces, of tea, we mean that if we take any ounce of it
out, then any other ounce out of what is left, and so on until
we have taken away fifteen ounces, there will always be an,_
ounce left.

If I say that I have been writing for fifteen minutes it(will
of course have been impossible actually to count thése
minutes except in the order in which they reallyfollowed
one another, but it will still be true that, if( ahy separate
fourteen minutes had been marked off durifig that interval
of time, the remainder of it, made up of the interstices be-
i:ziriejthese minutes, would amounthg dhe 111111%1%;2?-3%8

In all these eases we have been eounting things that hang
together in one piece; and werfind that we may choose at
will not only the order of{¢ounting but even the things
that we count. without altering the result. This process is
called the measurementof quantities.

But now suppo ithat when we measure the breadth of 2
room we find it tscgbe not sixteen feet exactly, but sixteen
feet and somegﬁiﬁg over. It may be sixteen feet and five
Inches, And\if‘so, in order to measure the something over,
We merglyfepeat the same process as before; only that in-
stead pfieounting feet we count inches, which are smaller
tha}f.‘f fect. If the breadth is found not to be an exact number
iiches, but that something is left beside the five inches, we
Wight measure that in eighths of an inch. There might, for
example, be three eighths of an inch over. But there 13 no
Security that the process will end here; for the breadth of
‘D€ room may not contain an exact number of eighths of an
meh, St1)] it may be said that nobody wants to know the
bre?dth of a room more exactly than to within an eighth of
an inch,
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Again, when we measure a quantity of tea it may be
nearly, but not exactly, sixteen ounces; there may be some-
thing over. This remainder we shall then measure in grans.
And here, as before, we are repeating the same process by
which we count things which are all in gne piece; only we
count grains, which are smaller things than ounces. There
may still not be an exact number of grains in the packet gf™
tea, but then nobody wants to know the weight of a pavket
of tea so nearly as to a grain. "\

And it is the same with time. A geological peridd-tay, if
we are very accurate, be specified in hundreds/al cénturies;
the length of a war in years; the time of departure of a train
to within a minute; the moment of an echipSe to a second;
our care being, in each cage, merely'% secure that the
measurement: it anseuyaie; enough for the purpose we have
in hand. O

To sum up. There is in comgi’on use & rough or approxi-
mate way of deseribing quanitities, which consists in saying
how many times the quantity to be deseribed contains a
certain standard quantity, and in neglecting whatever may
remain. The _sma!ien:t}ie standard quantity is the morc ac-
curate is the prqc\egs, but it is in general no better than an
approxinmation,\.

If then we‘want to describe a quantity accurately and
not by a.mere approximation, what are we to do? There is
no way.ef doing this in words; the only possible method is
toﬁa}rry about either the quantity itself or some other

_.quantity which shall serve to represent it. For instance, to
. yepresent the exact length and breadth of a room we may
draw it upon a scale of, say, one inch to a foot and catry
this drawing about.

Here we are representing a length by means of another
length; but it is not necessary to represent weights by means
of weights, or times by means of times; they are both in
practice represented by lengths. When 2 chemist, wishing to
weigh with great delicacy, has gone as near as he ean with
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the drachms whicl: he puts into his scales, he hangs 2 little
rider upon the heam of the scale, and the distance of this
rider from the :niddle indicates how much weight there
Is over. And, i we suppose the balance to be perfectly
true, and that no (riction or other source of error has to
be taken into account, it indicates this weight with real
8CCUracy. '

Here then is & casc in which a weight is indicated by‘a
length, namely, (he distance from the centre of the scalp to
the rider. Again, we habitually represent time by ieaiis of
a cloek, and jn this case the minute hand moves)by ‘a suc-
cession. of smali jerks, possibly twice a second~Such a clock
will only reckon time in half seconds, and cantéll us nothing
ahout smaller intervals than this. But_wé-may easi}ll); c(;m-
eeive of a clock in which the motion of\the minute hand is
steady, and not made by jerks. In t}ﬁ%agg%ﬁﬁ intervhE ot
lime since the end of the last houmwill be accurately repre-
Sented by the length round {he outer circle of the clock
measured from the top of it-t9'the point of the minute hand.
And we notice that here alSo the quantity which is measured
I this way by a len ﬁ}s probably not the whole quantity
Which was to be gs\fizated, but only that which remains
Over after the gredtér part has been counted by reference to
Some standard gitantity.

. We may thits describe weight and time, and indeed quan-
tities of any-kind whatever, by means of the lengths of lines;
and ig\what follows, therefore, we shall only speak of
Guantities of length as completely representing measurable
thibgs of any sort,

82. The Addition and Subtraction of Quantities

For the addition of two lengths it is plainly sufficient to
Place them end to end in the same line. And we must anslee
thaF’ a3 was the case with counting, so now, the possible
Variety in the mode of adding is far greater in the case of two
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quantities than in the case of two numbers. For either of
the lengths, the aggregate of which we wish to measure, may
be cut up into any number of parts, and these rany be in-
serted at any points we please of the other lengih, without
any change in the result of our addition.

Or the same may be seen, perhaps more clearly, by refer-
ence to the idea of “‘steps.” Suppose we have a straight lige
with a mark upon it agreed on as a starting-point, afid‘a
series of marks ranged at equal distanees along ihe lne and
numbered 1, 2, 3, 4.... Then any particular murber is
shown by making an index point to the right “pia.ce on the
line. And to add or subtract any other nurmberMrom this, we
have only to make the index move forwards or backwards
over the corresponding number of divjsi&l’s. But in the case
of lengths we ai6.Rebopestricted bg~the places which are
marked on the scale. Any length 49 shown by carrying the
index to a place whose distandgMrom the starting-point Is
the length in question (of whigh places there may be as many
as we please between a{gl},rj two points which correspond to
consecutive numbers),cand another length is added or sub-
tracted by making @he index iake a “step” forwards or
backwards of the hecessary amount.

It is seen at-once that, for quantities in general as well a8
for numbers)\a succession of given steps may be made in

any ordex;.\v@e please and the result will always be the
same..§~

2 &

N8B, The Multiplication and Division of Quantities

We have already considered cases in which a quantity is
multiplied; that is to say, in which a certain number of equal
quafntities are added together, a process called the multipli-
calion of one of them by that number. Thus the length
sixteen feet is the result of multiplying one foot by
sixteen,

We may now ask the inverse question: Given two lengtbs,
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what number must be used to moultiply one of them in order
to produce the other? And it has been implied in what we
have said shout the measurement of quantities that it 1s
only in specizl cases that we can find a number which will be
the answer to this question. If we ask, for example, by what
pumber a foot must be multiplied in order to produce fifteen

_inches, the word “‘number” requires to have its meaning 7

altered and extended before we can give an answer. We know
that an inch must be multiplied by fifteen in order to begtinie
fitteen inches. We may therefore first ask by what a-foot
must be multiplied in order to produce an inch{ And the
question seems af first absurd; because an ifdh’ must e
multiplied by twelve in order to give a footrand a foot has
to be, not multiplied at all, but divided by twelve, in order
to become an inch. v dbraulibrary.org.in

In order then to turn a foot into fiffeen inches, we must g0
through the following process; we\must divide it into twelve
equal parts and take fifteen of\them; or, shortly, divide by
twelve and multiply by fiftegn, Or we may produce the same
result by performing the'steps of our process in the other
order: we may frst, milltiply by fifteen, so that we get fifteen
feet, and then div}@e thig length into twelve equal parts,
each of which will’be fifteen inches.

Now if instiad of inventing a new name for this compound
operation we\ choose 10 call it by the old name of multiplica-
tion, We&:ﬁaﬂ be able to speak of multiplying a foot so as
to gat\fifteen inches. The operation of multiplying by fifteen

p "@@’dividing by twelve is written thus: 15; and so, to f?hange
oot into fifteen inches, we multiply by the fraction 1§

Of this fraction the upper number (15) is termed the numera-
tor, the lower (12) the denominator.

Now it was explained in the first chapter, that the for-
mule of arithmetic and algebra are capable of a double 1n-
terpretation. For instance, such a symbol as 3 meant, in the
first place, a number of letters or men, or aby other things;
but afterwards was regarded as meaning an operation,
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namely, that of trebling anything. And so now ths symbol
1% may be taken either as meaning ““so much’ of s foot, or
as meaning the operation by which a foot is changed into
fifteen inches.

The degree in which one quantity is greater or less
than another; or, to put it more precisely, that amount
of stretching or squeezing which must be applied ¢, the
latter in order to produce the former, is called thespatio of
the two quantities. If @ and b are any two lengyh’g,\%he ratio
of a to b is the operation of stretching or squeezing which
will make b into a; and this operation can, be always ap-
proximately, and sometimes exactly, represented by means
of numbers.! 7\

www.dbraulibrary.org.in v N\

3

§4. The Arithmetz'calﬁ%}i%ession of Ratios

For the approximate expression of ratios there are two
methods in use. In each,¥s in measuring quantities in gen-
eral, we proceed by using standards which are taken smaller
and smaller as we{gh on. In the first, these standards are
chosen according\to a fixed law; in the second, our choice
is suggested by the particular ratio which we are engaged In
measuring\%/

The first method consists in using a series of standards
each'ofwhich is a tenth part of the preceding. Thus to express
the::ratio of fifteen inches to a foot, we proceed thus. The
. (fifteen inches contain a foot once, and there is a piece of
< )length three inches, or a quarter of a foot, left over. This

quarter of a foot is then measured in tenths of a foot, and
we find that it is 2-tenths, with a piece—which proves to be
half a tenth—over. So, if we chose to neglect this half-tenth
we should call the ratio 12-tenths, or as we write it 1.2-
But if we do not neglect the half-tenth, it has to be measured
in hundredths of a foot; of which it makes 5 exactly. So that
the result is 125 hundredths, or 1.25, accurately.

* Integers or fractions—J.R.N,
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Again we will try to express in this way the length of the
diagonal of a square in terms of a side. We find at once that
the diagonal containg the side once, with a piece over: so
that the ratio in question is 1 together with some fraction.
I we now measure this remaining piece in tenth parts of a
side we shall find that it contains 4 of them, with something,
left. Thus the ratio of the diagonal to the side may be ap~
proximately expressed by 14-tenthe, or 1.4. If we now megs-
ure the piece left over in hundredth parts of the side we
shall find that it contains one and a bit. Thug~141-hun-
dredths, or 1.41 is a more aceurate description ofthe ratio.
And this bit can be shown to contain 4-thqusandths of the
gide, and a bit over; so that we arrive at,a still more ac-
curate value, 1414-thousandths, or 1.4¥4>"And this process
might be carried on to any degree Of %Eﬁ%ﬂfﬁf%%@r&
quired; but in the present case, unljke’ that considered before,
it would never end; for the ratio0f the diagonal of a square
to its side is one which cannot be accurately expressed by
means of nunbers. N

The other method of{approximation differs from the one
just explained in t-h'%{re’speet—tha.t the successively smaller
and smaller standard quantities in terms of which we meas-
ure the success@%e’remainders are not fixed quantities, an
inch, a tenth ofan inch, a hundredth of an inch, and so on;
but are %ggested to us in the course of the approximation
Ltself. AN

Wenbegin, as we did before, by finding how many times
‘th‘? lésser quantity is contained in the greater, say, the side
o4 square in its diagonal. The answer in this ease 1s, once
and a piece over, Let the piece left over be called a. We then
80 on to try how many times this remainder, g, is contained
in the side of the square. It is contained twice, and there is
8 Temainder, say b. We then find how many times b is con-
tained in a. Again twice, with a piece over, say c. And this
Process ig repeated as often as we please, or until no remain-
der is left, Tt will, in the present case, be found that each
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remainder is contained twice, with something over, in the
previous remainder.!

Let us now inquire how this process enables us to find suc-
cessive approximations to the ratio of the diagonal to the
side of the square.

Suppose, first, that the piece a had been exactly half the\
length of the side; that is, that we may negleet the remaihe
der b. Then the dla.gonal would be equal to the quie to-
gether with half the side, that is, to three-halves of the side.?

Next let us include b i our approximation, lftrh neglect

! For the more algebraically minded reader the proce'.g{\'de."scribed above
may be explained as follows: AS

o N8 £- o\
w&‘lbl auhbral ¥. orglm ‘\ v

o _1+_' Y

1 .8
=14
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1
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Oy 2

,\’\ N/

+
-

24+ —— ... —JR.N.

* Again, slgebraically: Agsuming b = Q

a 1 3/, B
Eopyt _1+——=— > ) —JR.N.
« 24" 2+9 2( )
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¢; that is, let us suppose that b is exactly one half of . Then
the side contains a twice, and half of «; that is to say, con-
tains five-halves of a; or @ is two-fifths of the side. But the
disgonal contains the side together with g, that is, contains
the side and two-fifths of the side, or seven-fifths of the side.
The piece neglected is here less than b, and b is one-fifth of
the side of the square. \

Again, let us include ¢ in our approximation, and suppose
it to be exactly one half of b. Then g, which containssb twice
with ¢ over, will be five-halves of b; that is, b will be two-
fifths of a. Hence the side will contain twice a and two-fifths
of a, that is, twelve-fifths of a; so that a isﬁvé—twelfths of
the side. And the diagonal is equal to theside together with
a; that is, to seventeen-twelfths of t]:teQide-.2 Also this ap-
proximation is closer than the gprecddinglibfery the ipiece
neglected is now less than ¢, which is one-half of b, which is
two-fifths of a, which is five-twélfths of the side; so that it is
less than one-twelfth of theside.

By continuing this procest we may find an approximation
of any required degree(ol*accuracy.

The first method f approximation is called the method
of decimals; the gecond, that of continued fractions.

! Assuming ¢ =,\o, ™

g=1—t:.—j¥;1—1_=1+ 11 = 11=%(<g)-—J,R.N.
\i“"+ . 2+— 2+;
O\ 2+5 2+'5
:?\"Af;"éuming d=10
\;gzlJr 1 14 11 14 11
2 2 2+
1 1 i
2—!———-~—d 2+ o 243
TR M1 .
2+ o
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§5. The Fourth Proportional

Oue of the chief diffeltelllc_es between quantities and num-
.ps 19 that, while the division of one number by ancther is
lml]"-, possible when the first number happens to be a multiple
i::f) t}he other, in the case of quantities it appears,_and we are
indeed aceustomed to assune, that any quantity may.be\
givided by any nu;:nber we like; that is to say, any lel}g‘tlgj—
qua,ntities of all kmds_ being represented by lengthsrma_y
be divided into any given number of equal pal:t-sé And, if
Jivision is always possible, that compound operation made
of multiplication and division which s ‘have called
s ultiplying by a fraction” must also beddlways possible;
for example, we can find five-twelfthsynot only of a foot
put of Yy -dbhenilengylethat we likgo\*

The question now naturally anses’ whether that general
operation of stretching or squggazinfg which we have called a
ratio can be applied to all quantities alike. If we have three
lengtbs, @, b, ¢, there is a.gertain operation of stretching or
squeezing which will cavert a into b. Can the same cpera-
tion be performed ’u'pbn ¢ with the result of producing a
fourth quantity disuch that the ratio of ¢ to d shall be the
same as the ratioyof @ to b? We assume that this quantity—
the fourth prepertional, as it is called—does always exist; and
this assumiption, as it really lies at the base of all gubse-
quentf{éla’thematics, 18 of so great importance as to descrve
further study.

e A e shall find that it is really included in the second of the
<_two assumptions that we made in the chapter about space;
namely, that figares of the same shape may be constructed
of different sizes. We found, in considering this point, that
it was sufficient to take the case of triangles of different
siges of which the angles were equal; and showed that one
triangle might be made into another of the same shape by
the equal magnifying of all its three sides; that is to say,
“Then two triangles have the same angles, the three ratios of
either side of one to the corresponding side of the other are



The Fourth Proportional 99

equal. ¥¢ this is true, it is clear that the problem of finding
the fourts proportional is reduced to that of drawing two
triangles of the same shape. Thus, for example, let o B and
A ¢ represcnt the first two given quantities, and A D the third
(Fig. 51); and let it be required to find that quantity which
is got from: & D by the same operation of stretching as is re-
E Q)
D N

A B C \
Fic. 51 ’

quired to turn A B into A €. Suppmg@}%ié,}mljaqi? E:Bn and
draw the Yine ¢ & making the anglela)c B equal to the angle
A 8. The two triangles A B D andA ¢ B are now of the same
shape, and consequently A ¢ A¢an be got from A B D by the
equal stretching of all its siki'es} that is to say, the stretching
which makes A B into A€ 13 the same as the stretching which
makes A4 D into A B.AE Is therefore the fourth proportional
required., &«

To render these matters clearer, it is well that we should
get a more exiot notion of what we mean by the fourth pro-
portional.AWé have so far only described it as something
which i€ got from a p by the same process which makes A B
into A . In what way are we to tell whether the process is
thesame? We might, if we liked, give a geometrical defini-
“tion of it, founded upon the construction just explained ; and
say that the ratio of A D to A E shall be calle “gqual’’ to the
ratio of 4 B to a ¢, when triangles of the same shape ean have
for their respective sides the lengths A B, A D, A G, and A E.
But it is better, if we can do it, to keep the science of quantity
distinct from the science of space, and to find some definition
of the fourth proportional which depends upon quantity
alone. Such a definition has been found, and it is very im-
portant to notice the nature of it. For we shall find that
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similar definitions have to be given of other quantiries whose
existence is assumed by what is called the principle of con-
tinuity.! This principle is simply the assumptici:, which we
have stated already, that all quantities can be divided into
any given number of equal parts.

If we apply two different operations of stretching to the
same quantity, that which produces the greater resuld s
naturaliy looked upon as an operation which under hl{e
circumstances will always produce a greater effect. Now we
will make our definition of the fourth pl’OpOI‘thf!.qi depend
upon the very natural assumption that, if two processes of
stretching are applied to two different quant;tiés, that proc-
ess which produces the greater result in the ane case wil also
produce the greater result in the other, /0™

Suppose, pew et we-have tried tdxapprommd to the
ratio which A ¢ bears to A 8, and thit we have found that
A c is between seventeen- twelﬁths and eighteen-twelfths of
A B, then we have fwo procesyes ‘of stretching which can be
applied to A B, the process.fenoted by 1 (that is, multiply-
ing by 17 and dividing bin12), and the process which makes
4 ¢ of it. The result of‘the former process is, by hypothesis,
less than the result\of the latter, because A © is more than
seventeen-twelithd of A B. Let us now apply these two proc-
esses to A p.)Thé former will produce seventeen-tweifths of
A D, the !&fﬁf}éf will produce the fourth proportional required.
Consequently this fourth proportional must be greater than
sevepteen-twelfths of 4 ».

Bﬂt we know further that A ¢is less than eighteen-twelfths
{ob'4 8. Then the operation which makes 4 B into a ¢ gives 8
less result than the operation of multiplying by 18 and divid-
ing by 12. Let us now perform both upon a p. It will follow
that the fourth proportional required is less than eighteen-
twelfths of A p. The same thing will be true of any fractions

;ve like to take, and we may state our result in this general
orm:—

* In modern mathematics this would be the equivalent of assuming the
existence of the real number system.—J.R.N.
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According a3 A ¢ is greater or is less than any specified
fraction of » B, so will the fourth proportional (if it exists)
be greater oz be less than the same fraction of A p.

But we shall now show that this property is of itself suf-
ficient to define, without ambiguity, the fourth proportional;

EE

A 5 6 ¢
Fra. 52

that is to say, we shall show that &h&rﬁl\ﬁ&am'ﬁabﬁ&”ﬁ% if-
ferent lengths satisfying this condition*at the same time,

If possible, Jet there be two lengths, A £ and A £, each of
them a fourih proportional to 43} A ¢, A » (Fig. 52). Then by
taking a sufficient number afléngths each equal to ® ¥/, the
sum of them can be made greater than A p. Suppose for ex-
ample that 500 of thend just fell short of the length A p, and
that 501 exceede it}-then, if we divide 4 p into 501 equal
parts, each of these'parts will be less than & &' Secondly, if
we go on markiug off lengths from p towards E, each equal
to one of thesesmall parts of A D, one of the points of division
must fall bétween & and £’; since E £ is greater than the dis-
tance b&bﬁfeen two of them. Let this point of division be at
¥, Theri A ¥ is got from A » by multiplying by some number
A 0ther and then dividing by 501. If we apply this same
Dfocess to A B we shall arrive at a length A &, which must be
either greater or less than 4 c. If it is less than A ¢, then the
Operation by which the length 4 B is made into A G is a legs
amount, of stretching than the operation by which & B is
made into A ¢. Consequently the operation which turns 4 D
into A Fis g less amount of stretching than that which gets

! To complete the proof Clifford should have considered the case where the

sum of the fengths chosen was exactly equal 1o A 0. The result as stated, how-
ever, is corrcet.—J RN,
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A E, and also less than that which gets A &” from 2 v. There-
fore a ¥ must be less than A B, and also less than » =', But
this is impossible, because ¥ lies between E and #’. And the
argument would be similar if we had supposed » « greater
than A c.

Thus we have proved that there is only one length that
satisfies the condition that the process of making s » into it
is greater than all the fractions which are less than t1:s process,
of making A B into A ¢, and less than all the fra.btmm ‘ﬁhlch
are greater than this same process.

Let us note more carefully the nature of this de’-ﬁmtmn

TFirst of all we say that if any fraction whatever be taken,
and if it be greater than the ratio of 4 ¢ to A, it will also
be greater t t?il% I{;%tlo of A EtoaD, wt&f it be less than
the one’if Will also be less than the othe}‘

This is a matter which can be testédin regard to any par-
ticular fraction. If a length 4 & wefg'given to us as the fourth
proportmnal we could find outiwhether it obeyed the rule
in respect of any one given frattion. But if there is a fourth
proportional it must satisf this rule in regard to all fractions
whatever. We cannot difectly test this; but we may be able
to give a proof tha,juxbﬁe quantity which is supposed to be a
fourth proportional’obeys the rule for one particular frac~
tion, which proef’shall be applicable without change to any
other fractign» It will then be proved, for this case, not only
that a f@l‘ﬂl proportional exists, but that this particular

Fi. 53

quantity is the fourth proportional. This is, in fact, just what
we can do with the sides of similar triangles. If the length
4B (Flg 53) is divided into any number of equal parts, and
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lines are drawn through the points of division, making with
A B the same angle that B D makes with it, they will divide
A D inte the same number of equal parts.

If now we set off points of division at the same distance
from one another from B towards ¢, and through them draw
lines making the same angle with the line A ¢ that B D does,
these Hnes will also cut off equal distances from p towards B\
If any one of these lines starts from A ¢ on the side of.©
towards 4, 3% will meet A £ on the side of ® towards.a.}be-
cause the iriangle which it forms with the lines 4 ¢ &nd A &
must have the same shape as A ¢ . So also any«j)né of these
lines which starts from A ¢ on the side of caway from a will
meet A # on the side of E away from a. i

Looking then at the various fractions’of A B which are
now marked off, it is clear that, it ¥ic O tHERFH 1585 than
4 ¢, the corresponding fraction of &\bis less than A ®; and if
greater, greater. It follows, therefore, that the line A E
which is given by this cong,t,rﬁb’tion gatisfies, in the case of
any fraction we choose, th‘efcc'}ndition which is necessary for
the fourth proportional{Gonsequently, if the second assump-
tion which we made™about space be true, there always is
a fourth proportivhal, and this process will enable us to
find it. O

There is, hwever, still one objection to be made against
our definition of the fourth proportional, or rather one point
in whigh\we can make it a firmer ground-work for the study
?f ratlos. For it assumes that quantities are continuous; that

Jsnthat any quantity can be divided into any number of
< &dual parts, this being implied in the process of taking any
numerical fraction of a quantity.

We say, for example, that if @, b, ¢, d, are proportionals,
and if ¢ is greater than three-fifths of b, ¢ will be greater than
Fhree»ﬁfths of d. Now the process of finding three-fifths of b
15 one or other of the following two processes. Either we
divide b into five equal parts and take three of them, or we
multiply b by three and divide the result into five equal parts.
(We know of course that these two processes give us the ¢..me
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result.) But it is assumed in both cases that we can divide a
given quantity into five equal parts.

Now in a definition it is desirable to assume s¢ little as
possible; and accordingly the Greek geometers in defining
proportion, or (which is really the same thing) in defining
the fourth proportional of three given quantitics, have triec{
to avoid this assumption.

Nor is it difficult to do this. For let us consider heshme
example. We say that if e is greater than three-fiftkof b, ¢
will be greater than the same fraction of d. Now ¢ vs mul-
tiply both the quantities @ and b by five. T}\ae.n for & to be
greater than three-fifths of , the quantity Mvhich ¢ has now
become must be greater than three-fifthe 'of the quantity
which b has become; that is, if the new®be divided into five
equal pRFtEEHA NS L be grgaj;}r than three of them.
But each of these five equal parts'is'the same as the original
b; and s0 our statement as to ¢h2 relative greatness of @ and
b is the same as this, that five times a is greater than three
times b; and similarly fore and d.

Now every fraction(involves two numbers. It is a com-
pound process mz%r aap of multiplying by one number and
dividing by another, and it is clear therefore that we may,
not only in this'particular case of three-fifths but in general,
transform 01;r~\rule for the fourth proportional into this new
form. Agcarding as m times ¢ is greater or less than # times
b, s0 {s\\m times ¢ greater or less than n times d, where m and
7 ang, any whole numbers whatever,

~(This last form is the one in which the rule is given by the
N\ Greek geometers; and it is clear that it does not depend on
the continuity of the quantities considered, for whether it
be true or not that we can divide & number into any given
number of equal parts, we can certainly take any multiple
of it that we like.

These fundamenta) ideas, of ratio, of the equality of ratios,
and of the nature of the fourth proportional, are now es-
tff,bﬁshed generally, and with reference to quantities of any
kind, not with regard to lengths alone; provided merely that
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it is always possible to take any given multiple of any given
guantity.

S5, Of Areas; Stretch and Squeeze

We shall now proceed to apply these ideas to areas, or
quantities of surface, and in particular to plane areas. The
simplest of these for the purposes of measurement is a recd™\
tangle. The finding of the area of a rectangle is in many
cases the samc process as numerical multiplication. EQ'r‘e};-
ample, a rectangle which is 7 inches long and § inc}}gsbroad
will contain 35 square inches, and this follows\Jrom our
fundamental ideas about the multiplication"\éf' numbers.
But this process, the multiplication of nunibers, is only ap-
plicable o the case in which we kn@w‘h@k‘mﬂﬂﬁﬁ@mﬁﬁ-ﬁﬁCh
side of the restangle contains the uniticflength, and it then
tells us how many times the area®f\the rectangle contains
the square described upon the wait of length. It remains to
find a methad which can always be used.

For this purpose we first.of all observe that when one side
of a rectangie is lengthéhed or shortened in any ratio, the
other side being kept'of a fixed length, the area of the rec-
tangle will be increased or diminished in exactly the same
ratio.

In order thetffo make any rectangle o P R g out of a square
04 ¢B (Figh4), we have first of all to stretch the side © 4 until

P T > R
OY B D
\™ G
\.
O A P
Fia. hd

it becomes equal to o », and thereby to stretch the whole
Square into the rectangle 0 D, which increases its area t-h.e
Tatio of 0 4 to o p. Then we must stretch the side o B of this
figure until it is equal to 0 q, and thereby the figure o D be-
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comes O E, and its area is increased in the ratio ¢f 0 B to
o q. Or we may, if we like, first stretch o B fo the length 0 g,
whereby the square o ¢ becomes o E, and then strcich 0 4
to 0 ®, by which 0 E becomes 0 k.

Thus the whole operation of turning the square © ¢ into
the rectangle o ® is made up of two stretches; or, as we have
agreed to call them, “multiplications”; viz. the sguare Has
to be multiplied by the ratio of o p to 0 A, and by the'satio
of 0 @ to 0 B; and we may find from the result thatghe order
of these two processes is immaterial. A\

For let us represent the ratio of o pto 0 A,bfyf the letter a,

and the ratio of 0 @ to 0 B by b. Then the ratio of the ree-

tangle o b to the square o ¢ is also a; in_ abher words, a times

o ¢ is equal oo MpAndsharatio of o/®to o D is b, so that b

times 0 b is equal to o ®; that is, b¢ites a times o ¢ is equal

to o B, or, as we write it, ba timéé’f) cisoRE
And in the same way b timeso ¢ is equal to o E and o tines

b times o c is a times o E,swhich is o .

Consequently we have-da times o ¢ giving the same result
as ab times o c; or, ag\we write it
\\H ba = ab,

which means.fhat the effect of multiplying first by the ratio

o and them'By the ratio b is the same as that of multiplying

first by.the ratio & and then by the ratio a.

This“proposition, that in multiplying by ratios we may
take'them in any order we please without affecting the result,
.. (tan be put into another form.

)~ Suppuse that we have four quantities, a, b, ¢, d, then I
can make ¢ into d by $wo processes performed in succession;
namely, by first multiplying by the ratio of b to @, which
turns it into &, and then by the ratio of d to 5. But I might

1. It i3 a matter of convention which has grown up in conseguence of our
ordinary habit of reading from left 10 right, that we always read the symbols
of a muli.i;_ﬂieation, or of any other operation, from right to lgfi. Thus o b times
any quantity o, means a times b times x; that is to say, we first muliply = by
?;;stand then by «; that operation being first performed whose symbol comes
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have produced the same effect on @ by first multiplying it
by the ratio of ¢ to @, which turns it into ¢, and then mul-
tiplying by the ratio of d to ¢. We are accustomed to write
the ratio of & to @ in shorthand in any of the four following
Ways -

bia, 2, bea b/, ~
[/1

and so the fact we have just stated may be written Qhﬁs”:—
b/a x d/b = c/a X dfe. N

Now let us assume that the four quantitiesgj,.d, b, ¢, d, are
properiionals; that is, that the ratios b/d\and d/e are equal
to one another. It follows then th@,@vg \][1:51u l/yamagfin d/b
are equal to one another,

This propesition may be otheﬁnSe stated in this form;
that if g, b, ¢, d are proportionals, then a, ¢, b, d will also be
proportionals: provided always that this latter statement
has any meaning, for it isuite possible that it should have
ho meaning at all. Suppese, for instance, that ¢ and b are
two Jengths, ¢ and 4 two intervals of time, then we under-
stand what is meetn\t by the ratic of & to @, and the ratio of
d to ¢, and thegeratios may very well be equal to one an-
other; but thefe is no such thing as a ratio of cto @, or of d
to b, becaqs}e the quantities compared are not of the same
kmd Wben however, four quantities of the same kind are
Proportionals, they are also proportionals when taken alier-

_ngfely; that is to say, when the two middle ones are inter-
< changed

§7. Of Fractions

We have seen in §3, page 92, that a ratio may be expressed
In the form of g fraction.! Thus, let a be represented by the
' Only where the two numbers are commensurable. The numbers repre-

Senting the Jengths of the side and diagonal of & square, for exarple, are not
Commensurable —J. R.N.
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fraction % and b by the fraction g, where p, g, 7, $ are num-
bers. Then the result on page 107 may be written—
P T _T4P

g s§ s g

Tet us examine 3 little more closely into the meaning of
either side of this equation. Suppose we were to take a recy

28N
p R’ P’ & A/
Q T (":}' '
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tangle o g T8 (Fig. 55), of which on€'side, 0 q, contained ¢
units of length, and another, 0 s, s ukits. Then this rectangle
could be obtained from the unii s¢uare by operating upon it
with the two stretches ¢ and s. Tts area would thus contain gs

square units. Now let us agi)ly to this rectangle in succession

the two stretches de@éd’ by % and Z—. If we stretch the rec-

tangle in the d};cﬁé{ién of the side 0  in the ratio of %, we

divide the ,SL@“O q into ¢ equel parts, and then take 0P
equal p tinee one of those paris. But each of these parts will
be equal to unity, hence o » contains p units. We thus con-
vert(ollr rectangle o T inte one o ', of which one side, 0 B,
denfains p and the other, 0 8, s units. Now let us apply to

this rectangle the stretch g parallel to the side o8 (as the

. r
figure is drawn p denotes a sgueeze). We must divide 08

into s equal parts and take r such parts, or we must measure
a length o® along os equal to » units. Thus this second
stretch converts the rectangle o ¥’ into a rectangle o &, of
which the side o P contains p and the side 0 R contains 7
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units of length, or into a rectangle containing pr square

P

units. Hence the two stretches q and E applied in succes-

sion to the rectangle o1 convert it into the rectangle o r'.
Now this may be written symbolically thus:—

2w E - rectangle 0 T = rectangle 0 R ~
= pr unit-rectangles. .
¢\
Now unit-rectangle may obviously be obtained frgmi“the

rectangle o T by squeezing it first in the rz}t;m’«.é in the

direction of 0 Q, and then in the ratio -ls~ iinghe direction o s.

Now this is simply savmg thato T conta.@:: gs unit-rectangles,
Sdbraulib

Hence the operation E I apphedwf‘vo urgllicirégggn%l%lm%t

produce ;—S of the result of 1t's Iapplication to the rectangle

or. That jg:—

- z - unit—geqfangle = &173 . p’r unit-rectangle,

. ¢
or, in our notati»o} = % - unit-rectangle.

Hence w\e ma,y say that 2 p g operating upon unity is

equal'% the operation denoted by %, or to multiplying

umty by pr and then dividing the result by gs. This equiva-
\ lefice is termed the multiplication of fractions.
A special case of the multiplication of fractions arises when

sequals r. We then have—

pT_P
g r @

But the operation - denotes that we are to divide unity into
r

* equal parts, and then take r of them; in other words, we
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perform a null operation on unity. The symbol of operation
may therefore be omitted, and we read—

p_7r,
q ¢

This result is then expressed in words as follows: (ziven a
fraction, we do not alter its value by multiplying the nul\
merator and denominator by equal quantities.

From this last result we can easily interpret the op&rahon

P, “\ N
q RS
For, by the preceding paragraph—— N4

P_PS onadl- g
www.dbraulibr#y.ogg. m 3 Q’S
Hence— o

P ~ﬁi§s'"qr
RN L8
¢ s gs ' gs

Or, to apply first ther @era.tlon L unity and then to add
\

to this the resuft, of the opera.tlon = is the same thing as

dividing un\lﬁy into gs parts, takmg ps of those parts, and
then adding to them gr more of the like parts. But this is

the saﬁne thing as to take at once ps + gr of those parts.
Thus Wwe may write—

RN

\: 2+[=p_s___+qr.
g s as
This result is termed the addition of fractions. The reader
will find no difficulty in interpreting addition graphically by
a suceession of stretches and squeezes of the unit-rectangle.
We term division the operation by which we reverse the
result of multiplication. Hence when we ask the meaning of

dividing by the fraction 1—; we put the question: What is the
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operation which, following on the operation “I—;, just reverses

its effect?

Now, TP _ B, T_PT
s g q7s g¢s
Suppose we take r=g¢, s = p.
Then LN 22'; O
7 q 4qp (™

£\
or, to multiply unity by g, and then by g , 18 to pei:f;rm the
operation of dividing unity into gp parts an;i,ﬁ.ﬁeh taking pg
of them, or to leave unity unaltered.x.:ggnce: the stretch ;%
completely reverses the stretch Eyﬁ}ﬁbﬁ&ﬁ%ﬁ&yﬁbﬁgﬂ@eze
which just counteracts the preg@gﬁr}g stretch. Thus multi-
plying by g must be an cggfssiiﬁidn equivalent to dividing by

. Or, to divide by z \1\5 thé same thing as fo multiply by

) 3

- AT

. This result is ‘tbﬁﬁ'ed the devision of fractions.

O 88, Of Areas; Shear
Hithento“we have been concerned with stretching or
Sque'f%ﬂ&"the sides of a rectangle. These operations alter its
areapbut leave it still of rectangular shape. We shall now
'fi?ﬁﬁribe an operation which changes its angles, but leaves
if§ area unaltered (Fig. 56).

d D F C _E- <
|l g
..... il .
ar A B b
Fro. 56

Let A B cp be a rectangle, and let 4 B & F be a paralielo-
gram (or a four-sided figure whose opposite sides are equal),
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having the same side, A B, as the rectangle, but having the
opposite side, B F (equal to A B, and therefore to ¢ ), some-
where in the same line as ¢ p. Then, since ¢ b is equal fo
E F, the points E and ¥ are equally distant from ¢ and » re-
spectively, and it follows that the triangles B c £ and ADF
are equal. Hence if the triangle B ¢ E were cut off the paral-
lelogram along B ¢ and placed in the position A D F, we should{
have converted the parallelogram into the rectangle without
changing its area. Thus the area of the parallelograrﬁ' 15
equal to that of the rectangle. Now the area of the.rectangle
is the product of the numerical quantity whickypepresents
the length of A D into that quantity which sépresents the
length of A B. A B is termed the base of the parallclogram, and
4 b, the perpendicular distance between is&-base and the op-
posite \ﬁi\(}e E}ﬁaéﬁﬁ%m@étﬁ' height. Thelarea of the parallelo-
gram is then i)rleﬁy gaid to be “the product of ifs base o
its height.”

Suppose ¢» and A 8 wereigld rods capable of shiding
atong the parallel lines cd afid ab. Let us imagine them con-
nected by a rectangulap&lastic membrane, A 8 ¢ p; then a8
the rods were moved,;:gibng ab and cd the membrane would
change its shape. I¥\would, however, al ways remain a paral-
lelogram with a(censtant base and height; hence its area
would be unghfinged. Let the rod a B be held fixed in posi-
tion, and tfe"tod ¢ » pushed along ed to the position EF.
Then aflxziﬁne, G B, in the membrane parallel and equal to0
AB Wif}l})e moved parallel to itself into the position 13, and
y\iﬂlgnét change its length. The distance through which €

g moved is ¢ B, and the distance through which @ has
moved is ¢ 1. Since the triangles ¢ 8 ¥ and ¢ B 1 have their
sides parallel they are similax, and we have the ratio of ¢ E
to @ 1 the same as that of B ¢ 10 B @} or, when the rectangle
A B €D 1s converted into the parallelogram A B E F, any line
parallel to A B remains unchanged in length, and is moved
parallel to itself through a distance proportional to its dis-
tance from A B. Such a transformation of figure is termed 2
shear, and we may consider either our rectangle as being
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sheared intc the parallelogram or the latter as being sheared
into the former. Thus the area of a parallelogram is equal to
that of a rectangle into which it may be sheared.

The same process which converts the parallelogram s B B F
into the rectangle A B ¢ p will convert the triangle A B &, the
half of the former, into the triangle 4 B ¢, the half of the,

9. N\
wwi dbraulibrary.org in
Fre. 57 AW

latter. Hence we may shear anyj’ﬁ'i:ié;ngle into a right-angled
triangle, and this will not alterjts area. Thus the area of any
triangle is half the area of-flie rectangle on the same base,
and with height equal $o\the perpendicular upon the base
from the opposite anglé:"This height is also termed the alti-
tude, or height of che\z triangle, and we then briefly say: The
area of a triangle,shalf the product of its base into s altitude.

A successiom\of shears will enable us to reduce any figure
hounded bé{é}fajght lines to a triangle of equal area, and thus
to deteu@né the area the figure encloses by finally shearing
this tl‘j%:bnglc into a right-angled triangle (Fig. 57). For ex-
ample) let A B¢ D E be a portion of the boundary of the

gure. Suppose 4 ¢ joined; then shear the triangle A B ¢ so
that its vertex B falls at B’ on b ¢ produced. The area A 8’ C
18 equal to the arca A B c. Hence we may take 4 B’ D E for
the boundary of our figure instead of A B ¢ D E; that is, we
have reduced the number of sides in our figure by one. By a
Succession of shears, therefore, we can reduce any figure
bounded hy straight lines to a triangle, and so find its area.
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§9. OF Circles and their Areas

One of the first areas bounded by a curved line which sug-
gests itself is that of a sector of a circle, or the portion of a

B A

Fic. 58 " 4 ".}c’

circle intercepted by two radii and the arc of the circumier-
ence between their extremities (Fig. 58). Before we can eon-
sider the apegof, this sepbor it will be necessazy to deduce some
of the chief properties of the completd dircle. Let us take a
circle of unit radius and suppose straight lines drawn at the
extremities of two diameters A and ¢p at right angles;
then the circle will appear asxf ‘drawn inside a square (see
Fig. 59). The sides of thls square will be each 2 and its
area 4.

Now suppose the ﬁgu,\re composed of cirele and sguare first
to receive a stretc]\‘such that every line parallel to the di-

X /o
‘, O N
o ’ & /
B

Fia. 59

ameter A B is extended in the ratio of a : 1, and then another
stretch such that every line parallel to c p is again extended
in the ratio of @ : 1. Then it is obvious that we shall have

stretche_d the square of the first figure into a second square
whose sides will now be equal to 2q.
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It remaivs to be shown that we have stretched the first
circle into unwther circle. Let o » be any radius and p o, » N
perpendiculars on the diameters A B, ¢ b, As a result of the
first stretchr the equal lengths 0 M and N p are extended
into the equal lengths o' M and N’ P/, which are such that
oM NP 1 . .
pavinbere el Similarly as a result of the second stretch'\
mPeand o ¥, which remained unaltered during the first stregch,

C oN MRS
are converted into M’ P’ and 0’ N'; so that o ﬁ =
During this second stretch o’ ' and N’ P’ remain fuh’altered.
Thus as the total outcome of the two stretehes we find that
the triangle 0 p ¥ has been changed into thedriangle o ¥’ ¥'.
Now these two triangles are of the gatag.shiane by what was
said on p. 99, for the angles at ¥ and Nare equal, beinig both
right angles, and we have seen thap—~

N 1. .%ewMm

NP @aro'u

Thus it follows that the.third side o P must be to the third
side o' »’ in the ratio of\ to a; or, since o P is of unit length,
o' ' must be equ&i\t’o the constant quantity a. Further,
since the angles @0 N, ¥ 0/ N’ are equal, o’ P’ is parallel to
o ». Hence the'Circle of unit radius has been stretched into a
circle of radius . In fact, the two equal stretches in diree-
tions atwight angles, which we have given to the first figure,
have performed just the same operation upon it, as if we ha'_d
Placed’ it under a magnifying glass which enlarged it uni-

formly, and to such a degree that every line in it was magni~
fied in the ratio of a to 1.

It follows from this that the circumference of the second
cirele must be to that of the first as a is to 1. Or, the cir-
cumferences of circles are as their radii. Again, if the arc
P Q is stretched into the arc ' @'—that is, if o' ¥, 0’ Q" are
respectively parallel to o », 0 g—then the are ' Q" is to the
8rC P q in the ratio of the radii of the two cireles. Since the
ares p q, p’ Q' are equa] to any other arcs which subtend
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the same angles at the cenfres of their respective circles, we
state generally that the arcs of two circles which sublend equal
angles at their respective centres are in the rafio of ihe corre-
sponding rodir.

Since the second figure is an uniformly magnified image
of the first, every element of area in the first has been mags.
pified at the same uniform rate in the second. Now the
square in the first figure contains four units of ares, aﬁd\n
the second figure it contains 4¢® units of ares. Hence every
element of area in the first figure has been magnifisd in the
second in the ratio of a? to 1. Thus the area of the circle in
the first figure must be to the area of the cirélg)in ths second

figure as 1 is to a2 Or: The areas of mrcleQ dre as the sguares
of their radiz

. www.dbraulibrary.org.in
It is uswﬂl to represent the area of ) cu-cle of unit radius

by the quantity «; thus the area, ot'a, circle of radius ¢ will
be represented by the quantu;y’ U

if, after stretching a B tol A 8’ in the ratio of g tc I, we
had stretched or squeezed ©p to ¢ ' in the ratio of b to 1,
where b is some quanti€y different from a, our square would
have become 2 re{@n’gle, with sides equal to 2a and 2b
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respectively. It may be shown that we should have dis-
torted our circle into the shape of that shadow of a circle
which we have termed an ellipse. Furthermore, elements
of area have now been stretched in the ratio of the product
of @ and b to 1; or, the area of the ellipse is to the area of the
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circle of unit radius as ab is to 1: whence it follows that the
area of the 2llipse 1s represented by wab, where a and b are
its greatest and least radii respectively.

We shall now endeavour to eonnect the area of a circle
of unit radius, which we have written a, with the number
of linear units in its cireumference. Let us take a number of
points unifzrraly distributed round the circumference of a
circle, 4 & ¢ 2w p (Fig. 61). Join them in succession to edeh,
other and {0 o, the centre of the circle, and draw the lineser-
pendicular to these radii (or the fangents) at A B ¢ D BE@ythen
we shall ha.ve constructed two perfectly symmetrieal figures,
one of whizl: is said to be inscribed, the other ciréiunscribed to
the circle. Mow the areas of these two figures dﬁhef‘ by the sum
of such triangles as A a B, and the area_af\the circle is ob-
viously greater than the area of theins@iibed andylesy than
the area of the eircumseribed ﬁguge;\xThUS the area of the

A_ZB
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circle'pust differ from that of the inseribed figure by some-
”ﬂgi;ﬁg' less than the sum of all the little triangles a @ B, B 8¢,
& Now from symmetry all these Little triangles are equal,
and their areas are therefore equal to one half the prorfh%ct
of their heights, or an, into their bases, or such quantities
3s 4 B. Hence the sum of their areas is equal to one ha'lf of
the product of an into the sum of the sides of the inscnbe'd
figure. Now the sum of the sides of the inscribed figure 1
never greater than the circumference of the (?ircle. If we
take, therefore, a great number of points uniformly dis-
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tributed round the circumference of our cirele, A and B may
be brought as close as we please, and the nearer wec bring
A to B, the smaller becomes an. Hence, by taking a sizflicient
number of points, we can make the sum of the triangles
A a8, BfBc, &c as small as we please, or the arcas of the
mscrlbed and cireumseribed figures, together with the area,
of the circle which lies between them, can be made to diffex
by less than any assignable quantity. In the limit thed e
may say that by taking an indefinite number of pa}iﬁ‘t-s we
can make these areas equal. Now the area of the™ntcribed
figure is the sum of the areas of all such triang[es a5 A OB,
and the area of the triangle A o B is equal to Xalf the produet
of its height o7 into its base A B; or if ‘We write for the
“ perimeter,” or sum of all the sides o B; 8¢, &e. the quantity
P, the sres dbthdilmscpibedifigure will equal 3p X © n. Again
if p’ be the sum of the sides af3, 67, &e. of the circumseribed
figure, its area = ip" X 0 B. o0
Since the triangles 0 a B0 B » are of the same shape,
being right-angled and sgiin equi-angled at 0, we have the
ratio of 8 n to & B, or of{their doubles A B to a 8, the same a8
that of o n to 0 B. B{lt. P is ob\qously o p’ in the same ratio
asaBtoaf; henc\p is to p’ as o » to 0 B. By taking a suf-
ficient number, of points we can make o n as nearly equal to
O B as we pl{aase thus we can make p as nearly equal to p’,
and therefgre either of them as nearly equal to the circum-
ferencek}f the cirele (which lies between them),! as we please.
Herrce in the limit » will equal the circumference of the circle,
) .and O n 1t¢ radius, and we may state that the areas of the
tiscribed and circumscribed figures, which approach nearer
and nearer to the area of the circle as we increase the number
of their sides, become ultimately equal to each other and to
“half the product of the eircumference of the circle into its
radius. This must therefore be the area of the eirele. Hence
we have the following equality -~—The area of a circle of
radius a equals one half its circumference x . But it equals
also ma®; whence it follows that the circumference of a circle
"In the case of the circle the reader will recognize this iptuitively.



{Of the Area of Sectors of Curves 119

equals 7 - 2¢. We may express this result in two different
ways:—

(i} The ratic of the cireumference of a cirele to its diame-
ter (2¢) is a constant quantity .

(ii) The rurnber of linear units (2r) in the circumference
of a circle of unit-radius is twice the number of units of area
(x) contained by that circumference. '

The value of 7, the ratio of the circumference of a circlesto
its diameter, i3 iound to be a quantity which, like the. .gatlo
of the diagonal of a square to its side (see p. 95); cannot
be expressed accurately by numbers; its approxunate value
is 3.14156. L

We have now no difficulty in finding the area Jof the sector
of a circle, for if we double the arc of a or we obwously
double its ares; if we treble it, we treﬁ 1 gazlfréaf “Ehoray) if
we take any multiple of it, we takethe same multiple of its
areg. Hence it follows by §5, thdt-two sectors are to each
other in the ratio of their arcs, or a sector must be to the
whole cirele in the ratio of itgarc to the whole circumference.

If we represent by s the'area of a sector of a cirele of which
the arc eontains s units\of length and the radius ¢ units, we
may write this relation symbolically—

9 D LB 8
7a®  2na
Thus we deduce s =4$sXa;or,
The areakof a seclor is half the pmduct of the length of its arc
mto ’ﬂt& vadius,

N
\ B

.'\

$10. Of the Area of Sectors of Curves

The knowledge of the area of a sector of a circle enables
U8 to find as aceurately as we please the area of a sector whose
are is any curve whatever. Let the arc P @ (Fig. 62) be divided
into a number of smaller ares P A, AB,BC CD,DQ We shall
Suppose that » A subtends the greatest angle at o of all these
arcs. Further we shall consider only the case where the line
©*® diminishes continuously if » be made to pass along the
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are from » to . If this be not the case, the.sector g o P can
always, be splituipringespaller sectqrs,{of which i+ shall be
true that a line drawn from the point 6 to the arc comtinu-
ously diminishes from one side of\the sector to the other,
and then for the area of each ef\these sectors the following
investigation will hold. Withro as centre describe a circle of
radius o P to meet 0 4 produced in ' ; with the same centre
and radius o a describeya’ circle to meet 0 B in 4’ and O P
in a; similarly circlé{\viﬁth radius 0 B to meet 0 4 in b and
0 ¢ in 8’, with radtas o c to meet 0 B in ¢ and 0 D in ¢/, with
radius 0 p to et 0 ¢ in d and o g in p’, and finally with
radius 0 q teymeet 0 Dine, 0 A in f, and o P in q’. Then the
area of t&é}s’éc’oor obviously lies between the areas of the
figure botnded by o P, 0 D’ and the broken line p p’ 4 A’ B B’
¢ ¢/ Y, and of the figure bounded by 0 4, 0 g and the broken
?e @ abrccdDeq. Hence it differs from either of them
by’less than their difference or by less than the sum of the
areas ® a, A’ b, B ¢, ¢’ d, 0’ e. Now since the angle at po P’
1s greater than any of the other sectorial angles at o, the sum
of all these areas must he less than that of the figure p#' f @/,
and the area of this figure can be made as small as we please
by making the angle 4 o » sufficiently small, This can be

1 If in the diagram the aress n’ p ¢ &' ndg,
around and moved into 4 a F o, there wi
of the smaller aress < the area Aafq.

B ccE, A" B b A are swung
1l be space left over. Thus the sum
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achieved by taking a sufficient number of points like 4, B, ¢,
b, &e. We are thus able to find a series of circular sectors,
the sum of whose areas differs by as small a quantity as we
please from: the area of the sector P 0 Q; in other words, we
reduce the prohiem of finding the area of any figure bounded
by a curved line to the problem already solved of finding the
area of a sector of a cirele. The difficulties which then arise
are purely those of adding together a very great number of
quantities; for, it may be necessary to take a very greaf
number of points such as AB¢D . ..in order to approach
with sufficient accuracy o the magnitude of the area’P 0 Q.

§11. FEatension of the Conceplion ofﬁrea,

Let A 2 ¢ » be a closed curve or logp, 0 g point inside it
. . : ) abradlihrary.or
(Fig. 63).: Then if a point P move round the perimeter 5f the
loop, the line o P is said to trace out the area of the loop AB CD.
By this is meant that successive® positions of the line 0P,
pair and pair, form together-With the intervening elements

of arc elementary sectors, the sum of the areas of which can,

~ P

" ¥ia. 63
"b‘? Eaking the successive positions sufficiently close, be made
IJO differ as little as we please from the area bounded by the
00p.

Now suppose the point o to be taken oulside the loop
A8 ¢ (Fig. 64), and let us endeavour to find the area then
traced out by the line o P joining 0 to & point P which moves
round the loop. Let 0 5 and o D be the extreme posillons of
the line o » to the left and to the right as »moves round the

! This must be a closed conver curve which doed pob cross itseli. —J.R.N.
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Fig. 64 X

loop A B ¢ D; then as P moves along the portion of the loop
D A B, OF moves counier-clockwise froﬁt right to left and
traces.anb dhedreashounded by theare b A B and the hnes
oD and o B. Further, as » movésalong the portion of the
loop B ¢ D, 0 ® moves clockwigeftom left to right and traces
out the area doubly shaded-ftbour figure, or the area bounded
by the arc & ¢ p and thelifes 0 B and o p. It is the difference
of these two areas wiich is the area of the loop 4 B ¢ . If,
then, we were to, cohsider the latter area o B ¢ D 0 as negative,
the lineop Woul‘cl\stlll trace out the area of the loop ABCP
as P moves round its perimeter. Now the characteristic dif-
ference incthe method of describing the areas o » A B o and
0B ¢ D.OJIS, that in the former case o® moves counter-
clook@i‘sé round o, in the latter case it moves clockwese.
Hence if we make a convention that areas traced out by O P
When it is moving counter-clockwise shall be considered
) positive, but areas traced out by op when it is moving
clockwise shall be considered negative, then wherever ¢ may
be inside or outside the loop, the line o » will trace out its
area provided P move completely round its circumference.
But it must here be noted that » may describe the loop
in two different methods, either going round it counter-
clockwise in the order of points A B ¢ b, or clockwise in the
order of pomnts A 0 ¢ B. In the former case, according to our
convention, the greater area 0 1 4 B 0 is positive, in the lat-
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ter it is negative. Hence we arrive at the eonception that an
area may fhove o sign; it will be considered positive or nega-
tive according as its perimeter is supposed traced out by a
point moving counter-clockwise or clockwise. This extended
conception of area, as having not only magnitude but sense,

is of fundainental importance, not only in many branches of
the exact sciences, but also for its many practical applica-~_
tions.t

Let a perpendicular o N be erected at o {which is, sxs~we
have seen, any point in the plane of the loop) to thé. plane
of the }.oqp, and let the length o N be taken along it eontain~
ing as many units of length as there are units ofidrea in the
loop 4 2 ¢ p. Then o x will represent the aréa.of the loop in
magnitude; it will also represent it in SOnse) if we agree that
0¥ shall always be measured in smb@abdamgﬂ from, o,
that to a person standing with his feet gt 0 and head at N the
point » shall always appear to, Move counter-clockwise.
Thus, for a positive area, N wilb be above the plane; for a
tegative arca, in the opposite direction or below the plane.
We are now able to represent any number of areas by seg-
ents of straight lines.dx Steps perpendicular to their planes.
The sum of any nufaher of areas lying in the same plane will
then be obtained; by adding algebraically all the lines which
Tepresent these \ziréas

When the-dréas do not all lie in one plane the representa-
tive lineg &ill not all be parallel, In this case there are two
methods\of adding areas. We may want to know the total
&mount of area, as, for example, when we wish to find the

'eestu of painting or gilding a many-sided solid. In this case
We add all the representative lines without regard to their
ction.

In many other cases, however, we wish to find some quan-
ity so related to the sides of a solid that it can only be found
by treating the lines which represent their areas as directed
magnitudes. Such cases, for example, arise in the discussion

di " 48 o calculating the cost of levelling and embanking, in the indicator
3grare, &c. It wag first introdueed by Mabius.
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of the shadows cast by the sun or of the pressure of gases
upon the sides of a containing vessel, &e. A method of
combining directed magnitudes will be fully discussed in the
following chapter. The conception of areas as directed mag-
nitudes is due to Hayward.

§12. On the Area of a Closed Tangle O

Hitherto we have supposed the areas we have talked dbetit
o be bounded by a simple loop. It is easy, howevef)yto de-
termine the area of a combination of loops. "Ihus, tonsider
the figure of eight in Fig. 65, which has two légps: if we go
round it continuously in the direction indicated by the arrow-
heads, one of these loops will have a positive, the other a
negative area, and therefore the total atea will be their dif-
ferenceyordberslifrilie g Bélequal. Whén a closed curve, like
a figure of eight, cuts itself it is‘térmed a langle, and the
points where 1t cuts itself ax:ejééﬁlled knots. Thus a figure of
eight i8 a tangle of one k‘rgbt'f In tracing out the area of a
closed curve by means of '® line drawn from a fixed point fo
a point moving round{the curve, the area may vary aceord-
ing to the directi%x\‘a:ﬁd the route by which we suppose the

A c
0N > B>
®
" :'\'.j‘:; “ AP
¢ o
el

Fre. 65

curve to be deseribed. If, however, we suppose the curve to
be sketched out by the moving point, then its area will be

perfectly definite for that particular description of it
perimeter.
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We shall now show how the most complex tangle may be
split up into simple loops and its whole area determined
from the areas of the simple loops. We shall suppose arrow-
heads to denole the direction in which the perimeter is to
be taken. Cionsider either of the accompanying figures. The
moving line o P will trace out exactly the same area if we
suppose it not to cross at the knot A but first to trace out L
the loop 4 ¢ and then to trace out the loop A B, in both cages
going round these two loops in the direction indicated by the
arrow-heads. We are thus able in all cases to comr:gft one
line cutting itself in a knot inte two lines, each hounding a
separate loop, which just touch at the point indieated by the
former knot. This dissolution of knots may be ‘suggested to
the reader by leaving a vacant Spaf(iﬁﬂ%kﬁea&hgl-?rwng %irri'nes
of the loops really meet. The twa knots in the foll ng
figure (Fig. 66) are shown dissolvedn this fashion:—

e — *.. """----:>_<:-":
,.--"’k:::.}{""""'-- s::, ¥ —
o)
—-"""'::::Q \ e —— " (""-'--—
\&~ Fic. 66

The ea“&ct? will now find no diffculty in separating the
most GO&IGX tangle into simple loops. The positive or nega-
tive gharacter of the areas of these loops will be sufficiently
inflitated by the arrow-heads on their perimeters. We ap-
énd an example (Fig. 67, page 126). i

In this case the tangle reduces to a negative loop a (Fig. 68)_ ’
and to a large positive loop b, within which are two other posl-
tive loops ¢ and d, the former of which contains a fifth small
positive loop ¢. The area of the entire tangle then equals
b+c+d+ ¢—a. The space marked s in the first figure will
b: S\‘i«‘en from the second to be no part of the area of the tangle
at all,
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Fre. 67
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§{3\ On the Volumes of Space-Figures

1et s"“éénsider first the space-figure bounded by three pairs
of pa.r ol planes mutually at right angles (Fig. 69). Such 3
spade-figure is technically termed a “rectangular parallele-

\‘Eilied,” but might perhaps be more shortly described as &

“right six-face.” We may first observe that when one edge
of such a right six-face is lengthened or shortened in any
ratio, the other non-parallel edges being kept of a fixed
length, the volume will be increased in precisely the same
ratio. Hence, in order to make any right six-face out of 2
cube we have only to give the cube three stretches (or it may
be squeezes), parallel respectively to its three sets of parallel
edges. Let 0 4, 0 B, 0 ¢ be the three edges of the cube which
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meet in 8 corper 0. Let 0 A be stretched to 0 A’, sa'that the
ratio of 0 A’ to 0 4 is represented by a; then if théfigure is to
remain right all lines parallel to o A will be'sfrétched in the
same ratio. The figure has now become a six-face whose sec-
tion perpendicular to 0 A’ only is a sqtigr%lﬂmbmwebeh-ﬁ B
to 0B, 30 that the ratio o1’ to 0B be represented by b,
and let all lines parallel to o B be increased in the same ratio;
the figure is now a right six-faé’é," only one set of edges of
which are equal to the edge of the original square. Finally
stretch 0 ¢ to 0 ¢/, so that o c and all lines parallel to it are
increased in the ratio of\0'c’ to o ¢, which we will represent
by ¢. By a process ﬁsiéting of three stretches we have thus
converted our original cube into a right six-face (Fig. 70)- If
the cube had beehr of unit-volume, the volume of our six-edge
would obvigusly be abe, and we may show as in the case of a
rectangle (588 p. 107) that abe = cba = bac, &e.; or the order of
m‘llt-ipls"hlg together three ratios is indifferent. If we term

) IE4 I
\\;.. B i/ —
e
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the face A’ ¢’ of our right six-face its base and o B” its hetght,
ac will represent the area of its hase, and b its height, or the
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volume of a right six-face is equal to the product of its base
into its height.

Let us now suppose a right six-face 0 A D ¢ T B F G to re-
ceive a shear, or the face B & F ¢ to be moved ix its own plape
in such fashion that its sides remain paraltel to their old
positions, and B and £ move respectively along B ¥ and EG.
If B’ E' @' ¥ be the new position of the face B u e F, ifls
easy to see that the two wedge-shaped figures 3 e Bf8/-0¢
and ¥ &' ¥ oD are exactly equal ; this follows from ghe equal-
ity of their corresponding faces. Hence the volame of the
sheared figure must be equal to the volume of thé right six-
face. Now let us suppose in addition thapihe face 8’ &' ¢’ ¥
is again moved in its own plane into the\position 8" & 6" ¥,
5o that B’ and E’ move along 8’ &’ 4md ¥ &’ respectively-
Thenw thébsldt ¥ eilgekhaped figures ' B° ¥/ ¥ A0 and
&' 5’ 6" ¥ b ¢ will again be equal, and the volume of the
six-face B' ¥ 6" ¥ A D c 0 obfained by this second shear will
be equal to the volume oftithe figure obtained by the first
shear, and therefore to the volume of the right six-face. Bub
by means of two shegr"s we can move the face B £ g F to any
position in its plafié,’ B” " ¢" ¥", in which its sides remain
parallel to theiﬁx}mer position. Hence the volume of a six-
face will remain unchanged if, one of its faces, 0 CD 4, I
maining figed; the opposite face, B & ¢ ¥, be moved anywhere
parallel to itself in its own plane. We thus find that the
volu@'bf a six-face formed by three pairs of parallel planes
i$~éf1ual to the product of the area of one of its faces and the

.. (perpendicular distance between that face and ifs parallel.
. For this is the volume of the right six-face into which it may
be sheared; and, as we have seen, shear does not alter volume.

The knowledge thus gained of the volume of a six-face
bounded by three pairs of parailel faces, or of a so-eailed
parallelepiped, enables us to find the volume of an obligue
cylinder. A right cylinder is the figure generated by any ares
moving parallel to itself in such wise that any point » moves
along a line » ' at right angles to the area (Fig. 71). The vol-
ume of a right eylinder is the product of its height » p’ and the
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generating area. For we may suppose that volume fo be the
sum of a number of elementary right six-faces whose bases, as
st p, may be taken so small that they wi!l ultimately com-
pletely fill the area A ¢ D, and whose heights are all equal
tor ¥, ;
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We obtain an obligue cylir}g}éf from the above right cylin-
der by moving the face A’ ¢t8’ b’ parallel to itself anywhere
in its own plane. But such a motion will only shear the ele-
mentary right six-faces;such as p 2’, and so no_t chan-ge thel;
volume. Hence thé<yolume of an oblique cylinder is equa
to the product _ofits base, and the perpendicular distance
between its faegs.

2.\
(814, On the Measurement of Angles

Hiiﬁe?to we have been concerned with quantities of ares
."ind\'.qtiantities of volume; we must now turn to quantities
obangle, In our chapter on Space (p. 60) we have noted one
method of measuring angles; but that was a merely relative
method, and did not lead us to fix upon an absolute unit.
We might, in fact, have taken any opening of the compaslfes
for unit angle, and determined the magni.tude of any ot ei
angle by its ratio to this angle. But there is an absolute ulm -
which naturally suggests itself in our measurement of ang :ls,
and one which we must consider here, as we 8}1?,11 frequently
have to make use of it in our chapter on Position.
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Let o A B (Fig. 72) be any angle, and let a circle of radius a
be described about 0 as centre to meet the sides of this angle

Fia. 72 '»‘;\\

in A and B. Then if we were to double the'angle 4 0 B, W
should-double-thebsmey ssyiif we were totreble it, we should
treble the arc; shortly, if we were $6 take any multiple of
the angle, we should take the samemultiple of the arc. We
may thus state that angles atj:hé" centre of a circle vary as
the ares on which they stand.Hence if § and 6’ be two angles,
which are subtended by ares s and s’ respectively, the ratio
of 8 to 9 will be the saﬁie as that of 5 to s". Now suppase ¢
to represent four n@t angles; then s’ will be the entire cir-

cumference, or, in our previous notation, 2za. We have
thus— "
9, g 8

N . 5.
N\ four right angles 2wa

N

Ndjlfv\t is extremely convenient to choose a unit angle
which shall be independent of the circle upon which we
\né‘eéb.sure our arcs. We should obtain such an independent
unit if we took the arc subtended by it equal to the radius
of the cirele or if we took s = ¢. In this case our unit equals
L of four right angles, = — i f
5 ght angles, = — of two right angles, = .636 ol &
right angle approximately.

Thus we see that the angle subtended at the centre of any

circle by an arc equal to the radius is a constent fraction of a
right angle.
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If thiz angle be chosen as the umt, we deduce from the
proportion @ is to 8 as s is to s’, that 6 must be to unity as s
is to the radivs a; ori—

s=af.

Thus, if we choose the above angle as our unit of angle,
the measure of any other angle will be the ratio of the are
it subtends from the centre to the radius; but we have seen
(p. 116) that the arcs subtended from the centre in, dif-
ferent circles by equal angles are in the ratio of the yadil
of the respective circles, Hence the above measurement of
angle is independent of the radius of the circle upbh which we
base our measurement. This is the primary. property of the
so-called cireular measurement of angles, and\it is this which
renders it of such great value. W“"‘.’*‘{"f}w'ibra"}’-m‘g-i“

The cireular measure of any angle {5 thus the tatio of the
are it subtends from the centre of\any circle to the radius
of the circle. It follows that tﬁé" circular measure of four
right angles is the ratio of ‘t}h'é"whole circumference to the

2:m; that is','equa.ls 2. The circular measure
~\

radius, or equals s

O . T
of two right angles<will then be , of one right angle 5 of

three right agg{éé"v?b—r, and so on.
7.3
'"\50

N §15. On Fractional Powers

-~ Bféfbre we leave the subject of quantity it will be necessary
Stoirefer once more to the subject of powers which we touched
upon in our chapter on Number (p. 16).
~ We there used a~ as a symbol signifying the result of mul-
tiplying g by itself » times. From this definition we easily
deduce the following identity —

2 &

an X aP X g¢ X g = artetetr,

For the left-hand side denotes that we are first to multiply
6 by itself times, and then multiply this by a?, or @ mul-
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tiplied by itself p times, and so on. Hence we may write
the left-hand side—

(aXaxaXa...tonfactors)
X({@xaexXxaxXa...topfactors)
X{@xaXaxXa...toqfactors) .
X(@xaxaXa...tor factors). \

But this is obviously equal to (eXaXaXa R ~s to
n+ p + ¢ + r factors), or to grHrtetr, \

If b be such a quantity that b = a, b is termed” o nth root
of @, and this is written symbolically b = Vg Thus, since
8 = 23, 21is a 3rd, or cube root of 8, Or, againy/since 243 = 3%,
3 is termed a 5th root of 243, N\

Now,_we have spen yagrgl}g conclusugn of our first chapter
that we can often learn a very great' deal by extending the
meaning of our terms. Let us now see if we cannot extend
the meaning of the symbol a2 Does it cease to have a mean-
ing when n is a fraction ex Hegative? Obviously we cannot
multiply a quantity by.itself a fractional number of times,
nor can we do so a nega.twe number of times. Hence the old
meaning of ¢, wi{ere n is a positive integer, becomes sheer
nonsense whengwe try to adapt it to the case of n being frac-
tional or negative. Is then a” in this latter case meaningless?

In an instance like this we are thrown back upon the results
of our, (éfinition, and we endeavour to give to our symbol
such{a* meaning that it will satisfy these results. Now the
flqldamenta.l result of our theory of integer powers is that—
) gntetetrd =grXgPXaixXa X.

This will obviously be true however many quantities, n, P

I
g, r, we take. Now let us suppose we wish to interpret a™
where }n is a fraction. We begin by assuming it satisfies the

above relation, and in order to arrive at its meaning we sup-

pose that ﬂ=p=q=r=...=%, and that there are m
such quantities, Then
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l
ntptgtr=mx_—=1I;
i i I
and we find ! = a™ X a® X a™ X ... to m factors

= (™),

Thus ¢ roust be such a quantity that, multiplied by itself\
m times, it equals o'. But we have defined above (p. 431,
132) an mih root of ¢ to be such a quantity that, multip’h‘ea' m

RN
times by itself, it equals ¢'. Hence we say that a® is equal
to an mth root of a'; or, as it is written for sh\,oijtness,—-

o = V.

We have {hus found a meaning fw&)ﬁgmma'symfgaﬁﬁon
from the fundamental theorem of\powers.

We can with equal ease obtain from the same theorem an
intelligible meaning for a* when n is a negative quantity.

We have g X a? = ¢**z\Now let us assume p=—n in
order to interpret a—. Wefind ¢* X e =a* " =a’= 1 (by
p. 29). Or dividing l}}&;ﬂ,

L e i,.;
QO a
that is to say,a—™ is the quantity which, multiplied by @
gives a grorduct equal to unity. The former quantity is
terme[Nh'e inverse of the latter, or we may say that a™ 18
the,iniverse of a®, For example, what is the inverse of 4?
mQ??ﬁOusly 4 must be multiplied by % in order that the p?od-
Uct may be unity. Hence 47 is equal to 3. Or, again, since
4= 2% we may say that 272 is the inverse of 4, or 2%

The whole subject of powers—integer, fractional, and
negative—is termed the Theory of Indices, and is of no small
importance in the mathematical investigation of symbolic
Quantity, Its discussion would, however, lead us too far be-
yond our present limits. It has been slightly considered here
in order that, the reader may grasp that portion of the fol-
lowing chapter in which fractional powers are made use of.



CHAPTER IV
Position

N

§1. All Posttion is Relative N,
TaE reader can hardly fail to remember instances/whien he
has been accosted by a stranger with some such question as:
“Can you teil me where the ‘George’ Inp ¥Migs?"'— How
shall I get to the cathedral? ”—— Where is the\liondon Road?”
The answerdtwathibreuestiom, however it ‘may be expressed,
can be summed up in the one Worgié}r\There. The answer
points out the position of the buildihg or street which is
sought. Practically the there is cpgﬁfeyed in gome such phrase
as the following: ““ You must keep straight on and take the
first turning to the right, then the second to the left, and

you will find the ‘Geore® two hundred yards down the

street.” N
Let usg examine so}zewhat closely such a question and an-

swer. ““Wherce iythe ‘George’?’’ We may expand this into:
“‘ How shall I%et\ from Zere’’ (the point at which the question
is asked) ‘At0"the ‘George’?” This is obviously the real
meaniqgi}f' the query. If the stranger were told that the
“George” lies three hundred paces from the Town Hall
dnvyﬁ the High Street, the information would be valueless
tothe questioner unless he were acquainted with the posi-
tion of the Town Hall or at least of the High Street. ¥qually
idle would be the reply: “The ‘George’ lies just past the
forty-second milestone on the London Road,” supposing
him ignorant of the whereabouts of the London Road.

Yet both these statements are in a certain sense answers
to the question: ““Where is the ‘George’?”” They would be
the true method of pointing out the there, if the question

had been asked in sight of the Town Hall or upon the Lon-
134
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don Road. We see, then, that the query, Wheref admits of
an infinite number of answers according to the infinite num-
ber of positions—or possible heres—of the questioner. The
where always supposes a definite here, from which the desired
position iz to be determined. The reader will at once recog-
nize that to ask, “Where is the ‘George’?”” without mean-
ing, “Where 1s it with regard to some other place?” is@>
question which no more admits of an answer than thisone:
“How shall T get from the ‘George’ to anywhere?”/ ~medn-
ing to nowhere in particular. A\

This leads us to our first general statement)with regard
to position. We can only describe the whereof a place or
object by describing how we can get at ib\from some other
known place or object. We determine .i’ﬁwhlqre_ relative to 2
here. This is shortly expressed bx ‘sa%ingr%élﬁ‘:aﬁfﬁﬁﬂon
is relative. O

Just as the “George” hasqanly position relative to the
other buildings in the towny or the town itself relative to
other towns, so a body, it® space has only position relative
to other bodies in spaes. To speak of the position of the
earth in space is adéaningless unless we are thinking at the
same time of the &n or of Jupiter, or of a star—that 1s, of
80me one or p@-ﬁef of the cclestial bodies. This result is sorme-
times desgribed as the ‘‘sameness of space.” By this we
only mesy-that in space itself there is nothing perceptlb!e
to theé'denscs which ean determine position.! Space iSs. as 1t
wefe} a blank map into which we put our objects; it is the

Z

- g:Q?‘v‘i*iistence of objects in this map which enables us at any
instant to distinguish one object from another. This process
of distinguishing, which supposes at least two objects to be
distinguished, is really determining a this and a fhat, a here
and a there: it involves the econception of relativity of
Position,

1 We shall return to this point later.
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§2. Position may be Determined by Directed Stops

Let us turn from the question: ‘“ Where is the “George’?”
to the answer: “You must keep straight on and take the
first turning to the right, then the second to the left, and you
will find the ‘George’ 200 yards down the streef.”

The instruction “$o keep straight on’ means to keep in the
street wherein the question has been asked, andin a r‘dre@‘g’lbﬂ\
(“straight on”) suggested by the previous motion wivthe
questioner, or by a wave of the hand from the questioned.
Assuming for our present purpose that the stréef¢ are not
curved, this amounts to: Keep a certain direebion. How far?
This is answered by the second instructiphTake the first
furning on 5 gn ht. More accurately we‘might say, if the
first, turming to %ﬁe rggﬂt were 150 yards distant: Kecp this
direction for 150 yards. Let this be\represented in our figure
(Fig. 73) by the step A B, wherggli’s’the position at which the
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question is asked. At B the questioner is to turn to the right
and, according to the third instruction, he is to pass the
first turning to the left at ¢ and take the second at . More
accurately we might state the distance B p to be, say, 180
yards. Then we could combine our second and third in-
s’gructions by saying: From B go 180 yards in a certain
direction, namely, BDp. To determine exactly what this
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direction © » is with regard to the first direction 4 B, we
might use the following method. If the stranger did not
change Lis divection at B, but went straight on for 180 yards,
he would come to a point p’, Hence if we measired the angle
D’BD between the street in which the question was asked
and the firzt furtting to the right, we should know the direc-
tion of 8 » and the position of » exactly. It would be de-
termined by rotating B o’ about B through the measuréd"
angle o' 5 ©. If we adopt the same convention for the meds-
urement of positive angles as we adopted for positiys ‘areas
on p. 123, the angle ' B  is the angle greater thantwo right
angles through which B o’ must be rotated counber-clockwise
in order to take it to the position B p. Let.ngterm this angle
v’ B D for shortness B, then we may invént a new symbol
{8} to denote the operation: Tuit “‘bﬁ@“ﬂﬂ’@c‘ﬁiﬁmw are
going in through an angle 8 counter-clockwise. If we use
the symbol 7/2 to denote an angle ‘equal to a right angle,
we have the following symbolidinstructions: '

{ 0 } =Keep styéight on,

{ #/2 } = Turnrat right angles to the left.
{ @ } = Turd right round and go back.
{37/2} ~“Purn at right angles to the right.

Thus for a tuzping from 4 B to the left the angle of our sym-
bolic Operatif;;;l will be less, for a turning from 4 B fo the
right gl'ega-ﬁe}, than two right angles.
1t tﬁ%directed person had gone to »’ instead of to v, he
would have walked 150 yards to 8 and then 180 yards to p’;
b€ Would thus have walked 4 B + B D/, or 150 yards + 180
\Jyords, In order to denote that he is not to continue straight
on at B we introduce the operator of turning, namt}ly (B},
before the 180 yards, and read 150 + {8)180 as the instruc-
tion: Go 150 yards along some direction A8, and then,
turning your direction through an angle 8 counter-clockwise,
&0 180 yards along this new direction. _
We are now able to complete the symbolic expressmn_of
our instructions for finding the *George.” The fourth in-
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struction runs: Take a turning at p to the left and go 200
yards along the direction thus determined, Let b ¢ repre-
sent 200 yards measured from D aleng 1 » produced, then
we are to revolve p G’ through a certain angle ¢'pa
counter-clockwise, till it takes up the position » . Then @
will be the position of the “George.” Let the angle ¢'D@
be represented by 7. Qur final instruction may be then ex={
pressed symbolically by {v]200. O\

Hence our total instruction may be written symbomaﬂy-—-

150 + {81180 + {v}200,

where the units are yards. S

But we have not yet quite freed this a-,ymbohc instruction
from any suggestion of direction as detepthined by streets;
the first50byatilrapecksiil to be take}r along the street in
which the question is asked. We can get rid of this strect by
supposing its direction determimed’ by the angle which a
clock-hand must revolve thipugh counter-clockwise, 10
reach that direction, starting¥rom some other fixed or chosen
direction. For example, gdppose the stranger to have a com-
pass with him, and at,£6t & ¥ be the direction of its needle.
Then we might fix tﬁ&\)omtlon of the street o B by describing
it as a direction. 8o many degrees cast of north, or still to
preserve our gourter-clockwise method of reckoning angles,
we might detérrmne it by the angle ¢ which the needle would
have to deéstribe through west and south to reach the posi-
tion a\p. We should then interpret the notation {a}150:
Walk 150 yards along a direction making an angle o with
fiopth measured through west,

Our answer expressed symbolically is now entirely cleared
of any conception of streets, For,

£a}150 + {81180 + {v}200

is a definite instruction as to how to get from a to G quite
independent of any local characteristics. It expresses the
position of @ with regard to a in a purely geometrical fashion,
or hy a series-of directed steps. Expanded into ordinary Eng-
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lish our symbols read: From a point A in a plane, take a
step & B of 150 units in a direction making an angle e with a
fixed direction, from B take a step B D of 180 units making
an angle £ with A B, and finally from p take a step p G of
200 units making an angle v with 8 p. All the angles are to
be measured counter-clockwise in the fashion we have de-
scribed above. ~

§3. The Addition of Directed Steps or Vecigrd.™

If we now compare our figure with the symboljeal instrue-
tion {a}150 + {81180 + {1200, we see thai,{@J150 repre-
sents the step A B, when that step is considered to have not
merely magnitude but also direction. Sithilarly B0 and b e
represent more than linear expressigudrior mambagyribhey
are also directed steps. We shall théf be at liberty to replace
our symbolically expressed ins@gfu'ction

{a}150 -+ {83180 + {7}200
by the geometrical quivéﬂéﬁt
AB+BD+DG,

. \"
provided we undg}stand by the segments A B, BD, DG and
the symbol -l;.\‘sémething quite different from our former con-

Fig, 74

ceptions (Fig. 74). We give a new and extended meaning to
our quantity and to our addition.

AB-+BD + b a no longer directs us to add the number of
units in B b to that in 4 B and to the sum of these the nurn-
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ber in p @, but it bids us take a step A B in a certain direclion,
then a step B D from the finish of the former step in ancther
determined direction, and finally from the finish p of this
second step a third directed step, b @¢. The entire operation
brings us from a to ¢. Now it is obvious that we should also
have got to ¢ had we taken the directed step a . Hence, if
we give an extended meaning to the word “‘equal’’ and to ,
its sign =, using them to mark the equivalence of the re-
sults of two operations, we may write ‘O

\.
"\

AG=AB-+BD+DG, ’;"

and read this expression:—a @ equals the sum Qf % B, BD
and D G. )

Steps such as we constdered in our cha ter on Quantity,
which weiedmaghitudesraken along an bne straight line,
are termed scalar steps, because they h{/e relation only to
some chosen scale of quantity. We' afld or subtract scalar
steps by placing them end to end ln any straighi line (see
§2 of Chapter 1I1), \

A step which has not cmly magmtude but direction 13
termed a wector step, bec&kuse it carries us from onc posilion
in space to another. Itds.tisual to mark by an arrow-head the
sense in which we are to take this directed step. For example
in Fig, 74 we are/ $0-step from a to B, and thus the arrow-head
will point tow, rds B for the step A B. In letters this is denoted
by writing-atbefore B. The method by which we have ar-
rived atthe conception of vector steps shows us at once how
to addythem.

Y gtor steps are added by placing them end to end in such
fashlon that they retain their own peculiar directions, and
50 that a point moving continuously along the zigzag thus
formed will always follow the directions indieated by the ar-
row-heads. This may be shortly expressed by saying the steps
are to be arranged in continuous semse. The sum of the
veetor steps is then the single directed step which joins the
start of the zigzag thus formed to its finish. In Fig. 75 let ab,
cd, ¢f, and gh be directed steps. Then let A B be drawn equal
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and parallei to ab; from B draw B ¢ equal and parallel to od,
from ¢ draw ¢ p equal and parallel to ef, and finally from o
draw p E equal and parallel to gh. We have drawn our zigzag
so that the arrow-heads all have ““a continuous sense.”
Hence the dirceted step A is the sum of the four given
vectors. If, for example, at ¢ we had stepped cv’, equal
and parallel to ef, but on the opposite side of B ¢ to ¢ D, an
then tzken b’ B’, equal and parallel to gh, the reader will
2 A
[ L
h O
\ \ / A N
™~ v O
d b ‘O
g

\

/ ’(‘:/\
B v dbra ulﬂarar y.org.in
v D

a =

a”"\

/’ ‘»."":"t“‘k\._'é
A A

a3l L

N

< L9

P, 7
remark at once tha,ti'j:a}\le arrow-heads in B¢, ¢’ and D' E
are not in (:Dntinq(ﬁ sense, or we have not gone in the proper
direction at Coyp\

Should thé\vector steps all have the same direction, the
2igrag eVQ\déﬁt-Iy becomes a straight line; in this case the
Veetor,ﬁepg are added precisely like sealar quantities; or,
Whﬁ:ﬂ';fvector steps may be looked upon as scalar, our ex-

fEem‘iled conception of addition takes the ordinary arith-
\etical meaning. .

We can now state a very important aspect of position in &
blane; namely, if the position of @ relative to a be denoted
by the directed step or vector A ¢, it may also be expressed
by the sum of any number of directed steps, the start of the
first of such steps being at 4 and the finish of the last at &
(see Fig. 76). We may write this result symbolically :—

AG=AB+BC+CD+DE+EF+FG
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It will be at once obvious that in our example as o find-
ing the “George,” the stranger might have becn directed
by an entirely different set of instructions to his goal. In

D
T// 7 X

C \
Fiq. 76 N

fact, hevmidhtablidveslyedit-ed to ma-kéféxtensive cireuits in
or about the town before he reached*the place he was seek-
ing. But, however he might gette &, the ultimate result of
his wanderings would be what he might have accomplished
by the directed step A G silpposing no obstacles to have
been in his way (or, “‘asithe crow flies”). Hence we sec that
with our extended dofiception of addition any two zigzags of
directed steps, AP D EFaand A B’ ¢ »' &' ¥ @ (which may
or may not cendéin the same number of component steps),

both starting\:iri 4 and finishing in @, must be looked upon as
equiva,le{f}ﬁstructions; or, we must take
N\

4
' AB4+BC+CDHDEHEF+TFE=AG=
m\ AB!—I-B!C"JFCPD’-!‘D"E"{“EIF"JFF’G’-

X

Yot other words, two sets of directed steps must be held to
have an equal sum, when, their starts being the same, the
steps of both sets will, added vector-wise, have the same
finish.

Now let us suppose our stranger were unconsctousty stand-
ing in front of the “George”” when he asked his question a3
to 1ts whereabouts, and further let us suppose that the per-
son who directed him gave him a perfectly correct instruc-
tion, but sent him by a properly chosen set of right and left
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turnings a considerable distance round the town before
bringing him back to the point A from which he had set out.
In this case we must suppose the ¢ George” not to be at the
point G, but at the point A. The total result of the stranger’s
wanderings having brought him back to the place from which
he started can be denoted by a zero step; or we must write
(Fig. 76)— ~\

AB+BCHCD+DPE+EF+FG+aa=0..,00)

We may read this in words: The sum of vector step'é\which
form the successive sides of a closed zigzag is zetd.\Now we

have found above that— R&
A.B-I—BC+CD+DE+EF+FE}=:AG..... (ii)

e N\ ..
Hence, in order that these two stuﬁg@hbsl(ibrarbdow)lmay
be consistent, we must have — ¢ Alegual to A &, or

AG+ga= 0.

This is really no more than saying that if a step be taken
from 4 to g, followed by.another from ¢ to A, the total oper-
ation will be 2 zero step. Yet the result is interesting as show-
ing that if we corgldér a step from a to @ as positive, a step
from ¢ to 4 madt be considered negative. It enables us also
to reduce subftaction of vectors to addition. For if we term
the operatien’ denoted by 4 B — D ¢ a subfraction of the vec-
tors A 8@nd b ¢, since » ¢ + ¢ p = 0, the operation indicated
amouits to adding the vectors A & and ¢ D, or t0 A B+ CD.
Hf{ﬂéé, to subtract two vectors, we reverse the sense of one

<‘1:f"£hem and add.

-
1

T S S P T v
Fre. 77

Theresult A 6 +G 4 = 0 can at once be extendgd to any num-
he‘_’ of points lying on a straight line, Thus, f PQESTUYV
(Fig. 77) be a set of such points—

Po+oRrR+RS+8T+TU+UTVHVP=0.
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For starting from P and taking in suecession the sieps indi-
cated, we obviously come back to p, or have performed an
operation whose result is equivalent to zero, or to remaining
where we started.

§4. The Addition of Veclors obeys the Commutative
Law

We can now prove that the commutative law holds fop
our extended addition (see p. 5). First, we can sl:!.qvk.\chat
any two successive steps may be interchanged. Congider four
successive steps, A B, B ¢, ¢ b, and p & (Fig. 78), & ui B i
stead of taking the step B ¢ we took a step B egual tocpin
magnitude, sense, and direction, we could, theh get from = to
D by taking dheagtdpanmrNiew let B D b{ joined; then in the
triangles B B D, D ¢ B the angles at B A0d'D are equal, because
they are formed by the straight lite B » falling on two
parallel lines B 1 and ¢ p; alsoghe side » » is common, and
8 1 is equal to ¢ . Hence it follows (see pp. 66-67) that these
triangles are of the samgshéjpe and size, or H » is equal to
B8 ¢; and again the an 1Qs B Db H and DB c are equal, or HED
and B ¢ are parallel4 Thus the step m p is equal to the step
B ¢ in direction, magnitude, and sense. We have then fror
the two methed¥’of reaching o from s,

\\ BC+CD=BD=BH-+HD

O ~evno

by what' we have just proved.
N

A

Fie. 78

- Hence any two successive steps may be interchanged. By
precisely the same reasoning as we have used on p. 11 we

can show that if we may interchange any two successive
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steps of our zigzag we may interchange any two steps what-
ever by a series of changes of successive steps; that is, the
order in which vectors are added is indifferent.

The impertance of the geometry of vectors arises from
the fact that many physical quantities can be represented
as directed steps. We shall see in the succeeding chapter
that velocities and accelerations are quantities of this char-
acter,

N
£ 2
28

86. On Methods of Determining Position in o \Plane

It has been remarked (see p. 92) that scalar>quantities
may be treated as steps measured along a.Stpaight line. In
this case we only require one point on this'line to be given,
and we can determine the relativepositisnubbmny other by
merely stating the magnitude of thétntervening step. A line
is occasionally spoken of as being a-space of one dimension;
in one-dimensioned space one point suffices to determine
the relative position of all gfhers.

When we consider, however, position in a plane, in order to
determine the whereabbuts of a point P with regard to another
A (Fig. 79) we req ireto know not only the magnitude but
the direction of the Step a ». Hence what scalar steps are to
one-dimensionéd §pace, that are vector steps to plane space.
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In order to determine the direction of a step A ® We ml-lst
]“10‘?? at least one other point B in the plapg. Space th.ch
Tequires two points to determine the position of a third

N\
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is usually termed space of fwo dimensions, There are various
methods in general use by which position in two-dimensioned
space is determined. We shall mention a few of them, con-
fining our remarks, however, to the plane, or to space of two
dimensions which is of the same shape on both sides.!

(¢) We may measure the distances between A and and
between B and . If these distances are of scalar magnitude,
r and ' respectively, there will be two points corresponding
to any two given values of r and »'; namely P and 2, \t‘,he‘in-
tersections of the two circles with centres at A ant/s and
radii equal to  and + respectively. We may{distinguish
these points a8 being one above, and the otler below 4 B
Only in the case of the circles touching willvthe two peints
coincide; if the cireles do not meet{\ there will he no
point_www,dbraulibrary.org.in < *¢

Tf P moves so that for each of ifs positions with regard to
A and B the quantities » and ' satisfy some definite relation,
we shall obtain a continuous.§et of points in the plane or &
curved line of some sort. Bar example, if we fasten the ends
of & bit of string of length  to pins stuck into the plane of

A\

2 N

thé ‘paper at A and B (Fig. 80), and then move a peneil about

g0 that its point » always remains on the paper, and at the

! A “space of two dimensions . . . of the same shape on both sides™ is es-
gentially & meaningless concept. Et becomes meaningful only when the space
of two dimensions is considered as embedded in a space of three dimensions.
The implications of the concept are perhaps more understandable when re-
latefl to e}cuwed two-dimensional space—analogous to the surface of a sphere—
f9r in this case, quite obviously, the space is not *“of the same shape on both
sides™: one side being concave, the other convex.—J. I N.

2 Thi:? sentence more correctly phrased should read “We may distinguish
these points as being on opposite sides of 4 5.”” For the specifications “above”
and “below” are equivocal when applied to positions in the plane.—J.R.N.
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same tims always keeps the string A P B taut round its point,
the peneil will trace out that shadow of the cirele which we
have called an ellipse.

In this case r + 7' = A P+ P B = [, the constant length of
the string. This relation r+ v’ = [ is an equation between
the scalar quantities r, v* and I, which holds for every point
on the ellipse, and expresses a metric property of the curve,
with regard to the points A and s. R

If on the other hand we cause » to move so that the.dif-
ference of 4 P and B P is a constant length (r — »' = l)\, then
pwill trace out the curve we have termed the hypérbola. We
can eause P to move in this fashion by meaps of 4 very simple
bit of mechanism. Suppose a rod B L {Fig. 81) capable of re~
volving about, one of its ends B; let a stzing of given length
be fastened to the other end 1 and to'¢hébhzedbpeintong Fhen
if, as the rod is moved round B, she)string be held taut to

Fia. 81

AS

the rod by,a’pencil point P, the pencil will trace out the
hyperbolay “For since 1® + P A equals a constant length,
namel§™that of the string, and L P + P B equals a constant
%e.ngt&, namely that of the rod, their difference or P& — P B
(8equal to the constant length which is the difference of the
#tring and the rod. .

The points 4 and B are termed in the cases of both elh;;se
and hyperbola the foci. The name arises from the following
interesting property. Suppose a bit of polished watch sprng
were bent into the form of an ellipse so that its flat side was
turned towards the foci of the ellipse; then if a hot body were
blaced at one foeus B (Fig. 82), all the rays of heat or light
radiated from s which fell upon the spring would be collected,
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F1c. 82

or, as it is termed, “focussed” at 4 ; hence A would be a much
brighter and hotter point than any other within the e;l\iipsb
(B of course excepted). The name focus is from the ‘Latin,
and means a fireplace or hearth. This property of 4} arc of
an ellipse or hyperbola, that it eollects rays ragidting from
one focus in the other, depends upon the fact that 4 » and
B make equal angles with the curve at ,I'Q\This geometrical
relation.comesponds $oua physical property of rays of heat
and light; namely, that they makethé same angle with a
reflecting surface when they reach it and when they leave
it. N

A third remarkable curve, which is easily obtained from
this our first method of considering position, is the lemniscate
of James Bernoulli (frein 'the Latin lemniscus, a ribbon). It
is traced out by a point » which moves so that the rectangle
under its distance$\from A and B is always equal to the area
of a given squate! (r - ' = ¢). If the given square is greater
than the square on half A B, it is obvious that p can never
cross between 4 and B; if it is equal to the square on half A B,
the letimtiscate becomes a figure of eight; while if it is less,
the.eutve breaks up into two loops.? In Figure 83 a series

< m‘}: The explanation is somewhat obscure. What is meant by *the rectangle
srider its distances’ is the area of the rectangle, the base of which is one dis-
tance and the altitude the other distance —J R.N.

* Thus if “
v o (ABY . . .
rer’ > (-5- the corresponding lemniseate is
port = (_42_‘?)’ « " “ “
) T" < (%g)’ 1 iL [H I3

.
%
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Fia, 83

of lemniscates are represented. A set of curves obtained by
varying a constant, like the given square in the case of ‘the
lemniscate, is termed a family of curves. Such families of
curves constantly occur in the consideration of“physical

problems, \\

§6. Polar Co-ordinates™

(8) The points A and B (Fig. %)deé?'bnﬁﬁgba:aﬁﬁé’ Whidse
direction is 4 5. If we know the lengthy P and the angle B A P,
we shall have a means of finding the position of ». Let r be
the number of linear units in 4 ®ahd # the number of angular
units in B A », where r andt@ may of course be fractions.!
In Imeasuring the angle 8 we shall adopt the same conven-
tion as we have employed in discussing areas (see p. 123);
namely, if a line at first coincident with 4 B were to start

AN p

Fig, 84

from that position, and supposed pivoted at 4 to rofate
counter-clockwise till it coincided with  ®, it would trace
out the angle §. Angles traced out clockwise will Like areas

., " Not merely fractions, but any resl number, or as Clifford says: *“quan-
t]ty"’-‘J,R,.N,
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be considered negative. Thus the angle B 4 P below AB
would be obtained by a rotation clockwise from 4 B to A P/,
and must therefore be treated as negative. On the other
hand, we might have caused a line rotating about 4 to take
up the position a P’ by rotating it counter-clockwise through
an angle marked in our figure by the dotted arc of & circle.
Further we might obviously have reached a ® by a line ¢
rotating about A clockwise, and might thus represent the
position of P by a negative angle. But even after we had\‘geﬁ’
to P we might cause our line to rotate about A a complete
number of times either clockwise or counter-clociise, and
we should still be at the end of any such number d¥’ complete
revolutions in the same position A p. N4

We have then the following four met}:@ds of rotating a

line abbt SE SR Eoinoidence with A 5{t6 coincidence with
APi— N\
{1} Counter-clockwise from A.ﬂto AP.

(11) Clockwise from A B toalr.

(i} The first of these eombined with any number of
complete revg]t\li;ions clockwise or counter-clock-
wise. )

{iv) The second ob these combined with any number

of compléte revolutions clockwise or counter-
clocl@‘;ﬁse.

The following terms have been adopted for this method
of de‘ge;lhming position in spacer—

The line A B from which we begin to rotate our line is
derred the ndtial (“‘beginning”) line; the length A P 18
tétmed the radius vector (from. two Latin words signifying
the carrying rod or spoke, because it carries the point 0
the required position) ; the angle B A  is termed the veclorial
angle, because it is traced out by the radius vector in moving
from 4 B to the required position 4 ®; A is termed the pole,
because it is the end of the axis about which we may sup-
pose the spoke to turn. Finally a4 p (=) and the angle
B A ¢ (= §) are termed the polar co-ordinates of the point P
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because they regulate the position of P relative to the pole A
and the initial line A B.

§7. The Trigonometrical Ratios

If » M be a perpendicular dropped from » on A B, the ratios
of the sides of the right-angled triangle P A M have for the
purpose of abbreviation been given the following names =<

O\
%, or the ratio of the perpendicular to the hypothenuse,

is termed the sine of the angle BAP.
-~
A B \J .
ﬁ, or the ratio of the base to the hypathenuse, 18 termed
www.}d‘br‘aulibl'ary.ot'g.in
the cosine of the angle B A Py

%, or the ratio of the perpeajélichlar to the base, is termed

the tangent of the”arig’te'n A P.

‘;—%:, or the ratiKQf:it}le base to the perpendicular, i termed

the cotangent of the angle B A P.
NS

If 6 be L"he Sealar magnitude of the angle B A P these ratios
are writfen for shartness, sin 6, cos 8, tant 8, and cot 6, respec-
tivelf, \Let us take any other point @ on 4 p, and drop @ N
perpendicular to A B, then the triangles @ 4 N, P A M aI® (_)f
“dhe same shape (see p. 99), and thus the ratios of their
corresponding sides are equal. 1t follows from this tbat the
ratios sine, cosine, tangent, and cotangent for 1}]1(:! triangles
QAN and P A M are the same. Hence we 56¢ that sin #, €08 g,
tan @, and cot § are independent of the position.of Pin A 2}
they are ratios which depend only on the magnitude of th‘_”
angle & & » or §. They are termed (from two Gl:eek wo?d:j
meaning {riangle-measurement) the trigonom_etncal 'ratm:.
of the angle 8. The discussion of trigonometrical ratios, or
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Trigonomeiry, forms an important element of pure mathe-
maties. The names of the trigonometrical ratios themselves
are derived from an older terminology which vonnected these
ratios with the figure supposed to be presented by an archer
whose bow string was placed against his bresst.!
N
§8. Spirals O\

Let us suppose the spoke 4 p (Fig. 85) to rexfel‘;teﬁ})out the
pole 4, and asit revolves let the point » move ality the spoke
in such fashion that the magnitude r of A » is always definitely
related in some chosen manner to the magnitude ¢ of B A P.
Then if » be taken as the point of a pencil 1t will mark out &
curved line Onuﬂﬁ% aplane of the pa,peja uch a curved Line is

www.dbra y.org.in
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termed g polar curve or spiral, the latter name from a Creek
word denefisg the coil, as of a snake, to which some of these
curves figy be considered to bear resemblance.
Omeof the most interesting of these spirals was invented
bzf Conon of Samos (/. B.c. 250}, but its chief properties
~having been discussed by Archimedes, it is usually called by
is name. The spiral of Archimedes is defined in the follow-
ing simple manner. As the spoke A » moves uniformly round
the pole the point » moves uniformly along the spoke. Let
! In our figure the angle b 4 p has been taken less than a right angle, it may
have any magnitude whatever, It has been found useful to establish a convention
vt'ith regard to the signs of the perpendicular P m and the bage A s, P M is con-
S}dered positive when it falls above, but, negative when it falls below the initial
line & B; & n is considered positive when  falls to the right, but negative

wher_‘ it falls to the left of 4. The reader will understand the valie of this con-
vention better after examining §§ 11, 12,
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¢ be the position of P when the spoke coincides with the
starting line A 8, and let A ¢ contain a units of length. Then
if » be the position of the pencil-point when the spoke has
described an angle B A P containing § units of angle, and if
4 ¢ be meazured along A P equal to A ¢, the point will have
described the distance ¢’ P while the spoke was turning
through the angle ¢ A p. But since the point and spoke are (>
moving unifermly, the distance ¢’ p must be proportional
to the angle ¢ A P, or their ratio must be an uncha.nggabfe
quantity for ali distaneces and angles. Let b be the( distance
traversed by the point along the spoke while it turls through
unit angle, then ¢’ » must be equal to the pumber of units
in ¢ o p muitiplied by b. Using r to denote the magnitude of
AP we have p N

o' p=>bx8 but < Iiv\/__!_:v.%\d.bm;uljbrary.org.in
thus: r=a-+bo. RO

This relsiion hetween » and s termed the polar equalion
to the spiral. O \\
The following easily cdhstructed apparatus will enable us
to draw a spiral of Archimedes. p E ¥ (Fig. 86) is a circular dise
&

Fia. 86

of chosen radinus ;upon the edge of this dise iscut a grO(?VG. To
the centre A of the disc is attached a rod or spoke Wl}leh can
be revolved about, 4 as a pole; at the other end of this rod is
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a small grooved wheel or pulley 6. A string is then fastened
to some point D in the groove of the dise, and passing round
the pulley @ is attached to a small block » which holds 2
pencil and is capable of sliding in a slot in the spcke. If this
block be fastened by a piece of elastic to A, the string from
P to ¢ and then from & to the groove on the disce wiil remain
taut. Now suppoesing the dise to be held firmly pressed against

the paper, and the spoke A ¢ to be turned about & coynter=

elockwise, the pencil p will describe the required spiralFor
the string touching the disc in the point T the fgo G AT
always remains of the same size and shape as-W& turn the
spoke about the pole; hence the length of steig @ T is con-
stant. Thus if a length of string representéd by the arc » T
be wound on to ]:Le disc as we turn the dpoke from the posi-
tion A ‘ﬁ”fg'gﬁé%és{ on Ang, the length'? G (since the length
¢ T always remains the same) must lose a length equal to
DT as P moves from ¢ to . But the amount of string DT
wound on to the dise is prefiertional te the angle through
which the spoke 4 ® has béen turned; hence the point » must
have moved towards @ through a distance proportional to
this angle, or it has described 2 spiral of Archimedes.

Once in possession of a good spiral of this kind we can
solve a problem®which often occurs, namely to divide an
angle into any-humber of parts having given ratios.! Let the
given angle.be placed with its vertex at the pole of the spiral
and let:bhe radii vectores 4 ¢ and A » (Fig. 87) be those which
cgjg(side with the legs of the angle. About the pole A describe 2
€ir¢ular arc with radius A ¢ to meet 4 pin ¢’. Now let us sup-
pose the problem solved and let the radii vectores A », A E,
A F be those which divide the angle into the required pro-
portional parts, If these radii veciores meet the circular
are ¢ ¢’ in D/, &, ¥ respectively, then by the fundamental
property of the spiral we have at once the lines »’ b, E' B,
F'F, ¢’ P In the same ratio as the angles cAD, CAE, CAT,

1}t is interest.i_ng to note ‘that the trisection of ar angle, one of the famous
problems of e]afssmal a_nthmty, while not possible using ruler and compass
ean be accomplished with the aid of the spiral of Archimedes.—J.R.N.

Q!
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¢4 P. Thus if we measure lengths A d, 4 e, A f equalto 4 D,
A E, A Frespectively along a p, ¢" p will be divids dindefinto
lengths which are proportional to the requiréd angles. Con-
versely, if we were to divide ¢’ p into segmants ¢’ d, d e, e f,
and f P in the same ratio as the requi\}'é” g%gﬁl’é{béﬁﬁs?&ﬁﬁm
should obtain lengths 4 d, A ¢, & f, whieh would be the radii
of cireles with a common centre A putting the spiral in the
required points of angular divigion. The spiral of Archimedes
thus enables us to reduce theé‘division of an angle in any
fashion to the like division of a line.

Now the division of :ajﬁne in any fashion, that is, intc a set
of segments in any diten ratio, is at once solved so soon as we
have learnt by the'id of a pair of compasses or a ““set, square”
to draw parailgPlines. Thus suppose we require to divide
the line ¢’ p ¢Rig. 88) into segments in the ratio of 3 to 5 to 4;
we have <{ﬂ}f ‘to mark off along any line through ¢’, say ¢’ q,
steps c/@yk s, s T placed end to end and containing 3, 5, and
4 unit§'of any kind respectively. If the finish of the last step

N

vV Q
T

R
C< 5 P
F]Q‘ 88

T be joined to p and the parallels Ry, 8sto TP t.hm“gh_ﬂ.and
S be drawn to meet ¢’ » in r and s, then ¢’  will be hand
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in r and s into segments in the required ratio of 3 to 5 to 4.
This follows at once from our theory of triangies of the
same shape (see p. 99). For, since R¢' 7, 8¢’ s, and TC' P
are such triangles, they have their corresponding sides pro-
portional, and the truth of the proposition is obvious.
A spiral of Archimedes aceurately cut in a metal or ivorg™

plate is an extremely useful addition to the ordinary gons
tents of a box of so-called mathematical instruments, {2

L &

§9. The Equiangular Spiral

Another important spiral was invented by Descartes, and
is termed from two of its chief propepti\eqs‘ either ithe egui-
angular or the logerilonse spiral. ~  (©

Let B0 4 (Fig. 89) be 2 f’riangle withd small angle at 0, and
whose sides 0 4 and 0 B are of any, 10t very greatly different
lengths. Upon o B and upon the opposite side of it to 4 con-
struet a triangle B 0 ¢ of theware shape as the triangle 4 0 B,

Q

Fic. 89

and in such wise that the allgles at 8 and A are equal. Then
upon o ¢ place a triangle ¢ 0 » of the same shape as either
BoOC or A0B; upon 0D a fourth triangle b o ¥, again of
the same shape; upon o & a fifth triangle, and so on. We
thus ultimately form a figure consisting of a number of
triangles A0B,BOC, cO D, D 0 B, &c., of the same shape,
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all placed with one of their equal angles at o, and in such
fashion that each pair has a common side consisting of two
non-corresponding sides (that is, of sides not opposite to
equal angles). The points A B ¢ D &, &c., will form the angles
of a polygnrial line, and if the angles at o are only taken small
enough, the sides of this polygon will appear to form a con-
tinuous curved line. This curved line, to which we can ap-
proach as closely as we please by taking the angles at'¢
smaller and smaller, is termed an eguiangular spiral It
derives its name from the following property,—a B, B¢)'¢D,
&e., being corresponding sides of triangles of the samie shape,
make equal angles 0B A, 0CB, ob ¢, &e., with* the cor-
responding sides 0 B, 0 ¢, 0 D, &¢.; but when~the angles at
0 are taken very small A B, B ¢, ¢ D, &c., Wil appear as suc-
cessive elements of the eurved ling’ 8{@%&@1&%@% are
of the spiral meets all rays from the pole o at the same con-
stant angle. O

Let us now endeavour to findsthe relation between any
radius vector o P (= r) and the*vectorial angle A0 » (= §).

Since all our triangles A0 B,B0C, coD, &, are Of the
same shape, their corgef\s;ponding sides must be proportional
{see p. 99); or, (\J

L\

\ F
OB yoC 0P _OFE_OF _ 4
Q4 oB OC OD O

Each of thés}g'équal ratios will therefore have the same scalar
Value;\.lé{"ﬁs denote that value by the symbol u. Then we
musthave

£\
{\NY OB=p-04; 0OC=p-0B; OD=4"0C; &oc.

Or, 0B=p.04; 0c=p2-0a; 0D =g -084 and 8o on.
Hence if o v be the radius vector which occurs after z equal
angles are taken at o, we must have

ON = u*:0A.

Now let, the very small angles at o be each taken equal to
some small part of the unit angle; thus we might take them
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w5 Or vdos of the unit angle. We will represent this frac-
tion of the unit angle by 1/b, where we may suppose b a
whole number for greater simplicity. Further let us use
A to denote the bt power of w, or A = p¥. With the notation
explained on p. 131 we then term g a b™ root of #, and write
g = A

Hence finally we have 0 8 = 0 4 - AXY* or in words: The
base of the {n + 1)** equal-shaped triangle placed aboub0
is equal to the base of the first multiplied by a certain qusn
tity A raised to the power of n-times the quantity i /b which
expresses the magnitude of the equal angles at ep % inits of
angle. 3

Now let the spoke or ray o p fall within the angle which is
formed by ¢ Iaﬁlﬁ%cesmve rays o N and g9-6f the system of
equal-gflape triangles % Téund o. Then\o &~ makes an angle
n-times 1/b, and 0 @ an angle (n 1) -times 1/ with O A.
Hence the angle A o , or §, mugilie in magnitude between
n/b and (n + 1)/b. Similarly the magnitude of o » must lie
between those of 0 ¥ and o ¢ Now by sufficiently decreasing
the angles at 0 we can approach nearer and nearcr to the
form of the spiral, andthe ray o » must always lic between
two successive rays"of our system of triangles. The angle 8,
which will thus dlways lie between n/b and (n + 1)/b, can
only differ fromither of them by a quantity less than 1/b.
If then b be\taken large enough, or the equal angles at ©
small en‘eggh fractions of the unit angle, this difference 1/b
can be‘made vanishingly small. In this case we may say
that\’m the limit the angle 8 becomes equal to n/b and the
%ay o P equal to o~ or o @, which will thus be ultimately
equal. Hence 0P =04 -A"%=04-), or in words: If a
ray o P of the equiangular spiral make an angle Ao P with
another ray o A, the ratio of 0 ® to 0 4 is equal to a certain
number A raised to the power of the quantity 6 which ex-
presses the magnitude of the angle 4 o p in units of angle.

If a and r be the numbers which express the magnitudes
of 0 A and o », we have r = g\". This is termed the polar
egquation of the spiral.
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We proceed to draw some important results from a
consideration of this spiral. The reader will at once observe
that the ratio of any pair of rays o p and o g (Fig. 90) is equal
to the ratio of any other pair which include an equal angle,
for the ratio of any pair of rays depends only on the included
angle, Further, if we wanted to multiply the ratio of any two
quantities p and ¢ by the ratio of two other quantitiesr and
s we might proceed as follows: Find rays of the equiangular \
spiral 0 7, 0 Q, 0 R, 0 8 containing the same number of linear
units as p, ¢, r, s contain units of guantity (see p. QQ\ani:l,

7%

S R R

P .
FiG. %}." -
let 8 be the angle between the! ffi'ést pair, ¢ the angle between

the second pair.
Then

o\
.O.Q'j_ # OS= L
By A and oo = A%

Whence it ioﬂb'v;rs that %—E X g—g— =N XN =N*?, or s
equal to thé};«tio of any pair of rays which include an angle
b+ qf’:@hﬁs if the angle Q o T be taken equal to ¢, and O T

N Y .
b% the corresponding ray of the spiral, o A+, and is &

Natio equal to the product of the given ratios. Hence to find
the product of ratios we have only to add the angles between
Pairs of rays in the given ratios, and the raifio of any two
1ays including an angle equal to the sum will be equal to
the requireq product. Thus the equiangular spiral enables
Us to replace muliiplication by addition. This is an extremely
valuable substitution, as it is much easier to add than o
tultiply, :
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Siace °2 divided by 2= = A divided by A = A%, it is
OR OR

obvious that we may in like fashion replace the division of
two ratios by the subtraction of two angles. A sei of quanti-
ties like the angles at the pole of an equiangular spiral which
enableg us to replace multiplication and division by additiont
and subtraction is termed a table of logarithms. Since(the
eqmangulax spiral acts as a graphical table of 10gar1thms,
it is frequently termed the logarithmic spiral.

§10. On the Nature of Logarithms

Since in the logarithmic spiral 0 » = W X N, where § is
equal tovthdtwnglbrare ®rewe note that'as ¢ increases, or as
the ray o P revolves round o, o p is équally multiplied during
equal increments of the vectorial angle s o p. 1When one
quantity depends upon another in such fashion that the
first is equally multiplied foi"equal inerements of the second,
it is said to grow at logarithmic rate. This logarithmic rate 18
measured by the ratid, § the growth of the first quantity for
unit inerement of the ¢ second quantity to the magnitude of
the first quantitybefore it started this growth.

Let us endéavour to apply this to our equiangular spiral.
Suppose A 033 B 0 ¢, ¢ 0D, &ec. to be as before the triangles
by meaQs ‘of which we construct it (see Fig. 89), the angles
at 04 bemg all equal and very small. Along o B measure 2
Jength oA’ equal to 0 A; along o ¢, a length o B equal t0
Sok; a.long 0D, a length o ¢’ equal to o ¢, and so on. Then
A"B, B'c, ¢'D, &ec., will be the successive growths as a
ray is turned successively from 0 A to 0 B, from o B to 0 S,
and so on. Join A A’, B %', ¢ ¢/, &c. Now the triangles A 0 B,
BOC, ¢ 0D, &c., are all of the same shape; so too are the
isosceles triangles 4 0 4’, 30%8’, c 0 ¢’, &c. Hence the dif-
ferences of the corresponding members of these sets, A A" B,
BB ¢, cc'p, &e., must also be of equal shape, and thus

their corresponding sides proportional. It follows then that
the lengths
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A" B, B’ ¢, ¢’ D, &c., are in the same ratio as the lengths
A’ a, B 5, ¢ ¢, &e., or again as the lengths
04,03, 0¢, &e.

Whence we deduce that

A'B B¢ ¢bp
—— e = &e.
OA B OC ~

Or, the growth A’ B is always in a constant ratio to the, grow-
ing quantity o A. N

Now, if the angles at o be very small, the ling A"a" will
practically coincide with the are of a circle with eentre o
and radius equal to o A. Hence (see pp. 130,331) A A" will ul-
timately equal 0 A X the angle A o o', while"the angle at A’
will ultimately be equal to a rightvanghraulibrary .org.in

Further, the ratio of A’ B to 4 a{remains the same for all
the little triangles 4 A’ B, B B ¢, 6.¢/'D, &e. It is in each case
the ratio of the base to the perpendicular when we look upon
these triangles with regard t5°the equal angles AB A’, B C B/,
¢D ¢/, &e. Now these arelthe angles of the triangles which
give the spiral its nan@’: Let any one of them, and therefore
all of them, be equal t6 a. By definition the cotangent of an
angle (see p. 151} }s\equal to the ratio of the base to the per-
pendicular. \J

Hence N

R A'B A'B
S“‘z’ cota = s OAxangleAOA"

.\’
* '. ’

0;‘.\'~ S AB = angle 404 Xcoba.
m\J OA

Now 4 B denotes the growth for an angle 4 0 A", supposed
very small; whence it follows that the logarithmuc Tate, or
the ratio of the growth to the growing quantity for uni angle,
is equal to cot . Thus the logarithmie rate for the grov'vth of
the ray of the equiangular or logarithmic spiral, as it de-
seribes equal angles about the pole, is equal to the cotangent
of the angle which gives its name to the spiral. .

Let us suppose o 4 to be unit of length, then, since 0'®
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= 0 A X N, the result o P of revolving the ray ¢ 4 through
an angle # equal to unity will be A, or A is the result of making
unity grow at logarithmic rate cot a.

Now let us denote by the symbol ¢ the result of making
unity grow at logarithmic rate unity during the description
of unit angle. Then e will have some definite numerical value.
This value is found, by a process of calculation into which ™
we cannot enter here, to be nearly equal to 2.718, (Fhis
means that, if while unit ray were turned through unit angle
it grew at logarithmie rate unity, its total growth-{1.718)
would lie between eight and nine-fifths of its jfitial length.
Since ¢ is the result of turning unit ray threugh unit angle,
and since the ray is equally multiplied ferequal multiples
of angley-etdustibrenpresent the result/of turning unit ray
through + unit angles. Hitherto we\have bcen concerned
with unit ray growing at logarithraie rate unity; now let us
suppose unity to grow at logarithmic rate +; then it grows?y
times as much as if it grew aftlogarithmic rate unity, or the
result of turning unit ray through unit angle, while it grows
at logarithmic rate v, must be the same as if we spread 1/
of this rate of growth)over 4 unit angles; that is, as if we
caused unity to grow at logarithmic unity for -y unit angles,
or ¢". Hence e¥,dénotes the result of making unit ray grow
at logarithmib rate unity while it describes ~ unit angles, of
again of aigking unit ray grow at logarithmic rate y while it
describésa unit of angle.

Leb us inquire what is the meaning of ¢” when v is a com~
Jmensurable fraction equal to s/¢, s and ¢ being integers. Let
\#be the as yet unknown result of turning unit ray through an
angle equal to ¥ while it grows at unit logarithmic rate; then
«* will be the result of turning unit ray through ¢ angles equal
to v while it grows at unit rate; but 7 angles equal to v form
an angle containing s units, or this result must be the same
as the result of turning unity through an sngle s while it
grows aft logarithmie rate unity. Thus we have zt = e*. That
18, z 18 a &-th root of e, or, as we write it, equal to e = €"-
Thus ¢7, if ¥ be a commensurable fraction, is the result of
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causing unit ray to grow at logarithmic rate unity through

an angle squal to v, or as we have seen at logarithmie rate ¥

through unit angle,

Now let us suppose it possible to find a commensurable
fraction 7y equal to cot a; then the result of making unity
grow at logarithmic rate cot a as it is turned through unit
angle must be ev. But we have seen (see p. 162) that itds,
equal to A. Hence N

A=e. R\

Further, the result of making unity grow at logarithmic

rate cot o as it is turned through an angle # is)}¢; or,
Al =g, '”z\\

Thus we may write W\fx@lgraulibrary.ol'g.in

0P =04a-N=04&:¢",

or with our previous symbols, ,'

T =;f§ \ e,

This is therefore the elqiié,tion to our equiangular spiral
expressed in terms of the quantity e. _

If we take a spiralih which a is the unit of length, and in
which cot o or 5 'is'also unity, we find
The sympdl/e® is then read the expomential of 6, Md 0 is
terme%fﬁhé’ natural logarithm of r. It is denoted symbolically
thugs

N ¢ = log. 7.

\M‘T}ie quantity e is termed the base of the natural systen:} of
logarithms. Our spiral would in this case form a graphical
table of natural logarithms.

Returning to the equation

r=aq-e?’,
let us suppose v so chosen that e” = 10; then « will repre-

Sent the angle through which unit ray must be turned .in_
order that, growing at unit logarithmic rate, it may 1n-



164 CuarreEr IV : Position

crease to ten units. Again taking a to be of unit length we
find r = ¢ = 10°. 8 is in this case termed the logarithm of 7
to the base 10, and this is symbolically expressed thus:—

6 = logm r.

The spiral obtained in this case would form a graphical table
of logarithms to the base 10. Such logarithms are those(\
which are usually adopted for the purposes of practical eals
culation. O\

Natural logarithms were first devised by .J oi}_IjnzN&Piel',
who published his invention in 1614.! Logaritiws to the
base 10 are now used in all but the simplestafuierical cal-
culations which it is needful to make in thé\Exact sciences;
their valyearisesiselelw.from the fact thataddition and sub-
traction are easier operations tham\ multiplication and
divisgion, N\ 4

$11. The Cartesian Method of Determining Position

() In order to deterraiiie the position of a point »; in space
of two dimensions, {R@&ﬁay draw the line B 4 3’ (Fig. 91)

\ C
N :\H P: P(
N \
:"\.Q¢
o 3
& |
R\ M i w B
\ %
3, P{
C
FiG. 01

joining the g:iven points A B and another line ¢ A ¢’ at right
angles to this through a. These will divide the plane into

! Logarithmorum Canoniz Descriptio. 4to. Edinburgh, 1614,
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four equal portions termed quadranis. Let »y M be a line drawn
from the point p; (the position of which relative to A we wish
to determineg), parallel to ¢ 4 and meeting B’ 4 B in M. Then
we may state the following rule to get from A to p,: Take a
step A M {roin 4 on the line 8" A B, and then a step to the left

at right ungles to this equal to M ».. Now a step like 4 M may
he taken cither forwards along 4 B or backwards along 4 8’/
Precisely as before (see p. 92) we shall take + A M fo mean

a step forwards along a B, and — A M to mean a step\‘kﬁ’

backwards along a 8’ through the same distance a u, Lét us

use the letter ¢ to denote the operation, which(We have

represented by (m/2) on p. 137. Thus applied o Uit step it

will signify: Step forwaerds in the directiod<6f’the previous

step and from its finish unit distan d‘ﬂf n rotate this

unit distance through a right anglefﬁ&fﬁgﬂ-lé E?cﬁgws%rﬁﬁ%ut

the finish of the previous step. The-dperator 7 placed before

& step, thus ¢-M 7, will then be “Interpreted as follows:

Step from xr in the direction a 8@ distance equal to the length

M P, and then rotate this step a p; about M counter-clock-

wise through a right ang}e.‘We are thus able to express syrm-

bolically the position of\p; relative to a, or the step A Py, by

the relation \ \d )

N AP =AM+ i -MPL

If we had o get to a point P, in the quadrant BAC',
instead of 48, we should have, instead of stepping forwards
from Mj\\tﬂo" step backwards a distance M Py, and then rotate
this .fthI'OUgh a tight angle counter-clockwise. The step
b“@\ckwards would be denoted by inserting a — sign as a re-

“¥ersing operation (see pp. 35, 36), and we should have

AP =AM—71 -MPs

Next let. us see how we should get to a point like P in the
Quadrant ¢ a ', where », is at a perpendicular distance
P: M’ from A B’, First, we must take a step, A »', backwards;
this is denoted by — A m'; secondly, we must step forwards
from w' 5 distance a’ p.; since this step is forwards, it will
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be towards a; thirdly, by applying the operation ¢ to this
step, we rotate it about M’ counter-clockwise through a right
angle, and so reach p.. Hence

APp=—AM 417 M P

Finally, if we wish to reach p; in the quadrant B” 4 ¢/
we must step backwards A v/, and then still further hatk-
wards a step M p;, and lastly rotate this step cqunter-
clockwise through a right angle. This wili be enge&?sed by

< 3

APg=—AM —2-M Pa. )
"

Now let us suppose Py, Py, Py, Py, to be thesfour corners of a
rectan%ular B%Hﬁ% whose centre i1s at ‘xa{and whose sides are

wowr.d rary . org.i €4 .,
parallel to BA B and ¢ £¢. Let thehigmber of units in A M

be z, and the number in M P, bey,then we may represent
the four steps which determide. the positions of the ¥’s

N

relative to a as follows:— )

APL=x+ gy APp=—T+ 1Y
Apy=—x Ly APy = — il
)

Here z and y,a}% mere numbers, but, when we represent
these numbers'by steps on a line, the y-numbers are to be
taken on afertain line at right angles to that line on which
the z—q@n\bers are taken. Thus the moment we represent
our {5§&nd y numbers by lengths, they give us a means of
detérmining position.

S “The quantities # and y might thus be used to determine the
N\ bosition of a point, if we supposed them to carry with them
proper signs. Our general rule would then be to step orwards
fr.om A along A B a distance z, and then from the end of z 8
distance forwards equal to y; rotate this step y about the
end of x counter-clockwise through a right angle, and the
ﬁ_nish of y will then be the point determined by the quanti-
ties x, y. If = or ¥ be negative, the corresponding forwards

must be read: Step forwards a negative quantity, that is,
step backwards. Thus:—
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Py, or position in the quadrant B A ¢ is determined by z, y.

P : . . . ©caAB . . -z, ¥
P; ) . . . Bacd . .=z, — 1.
Py . . . . C'AB . .z, -

The quantities & and y are termed the Cartestan co-ordi-
nates of the point p, this method of determining the position

C
O
P““ 2N\ ~
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www,c].b';‘a\dijbrary.org.in
C O
Fic. 92

of a point having been first used b Descartes. B A B’ (Fig. 92)
and ¢ 4 ¢ are termed the co-érdinate azes of = and y respec-
tively, while A is called the grigen of co-ordinates. For example,
let the Cartesian co-ordinates of a point be (-3, 2). How
shall we get at it frond the origin A? If P be the point, we have
AP= — 3+7.2. Hente we must step backwards 3 units; from.
this point step, {bi'wards 9 and rotate this step 2 about the
extremity of-thé step 3 through a right angle counter-cloek-
wise; we.siiall then be at the required point.

If  ¥endetermined by its Cartesian co-ordinates & and ¥,
“'B,I{ﬁght find a succession of points, ®, by always taking a
stepy related in a certain invariable fashion to any step =
“Wifich has been previously made. .

Such & succession of points P, obtained by giving & every
possible value, will form a line or Curve, an_d the relation
between = and y is termed its Cartesian equation.

As an instance of this, suppose that for every step z, we
take a step y equal to the double of it. Then we shall have
for our relation y = 2z, and our instructions to reach any
Doint » of the series are x -+ i - 22. Suppose the guadrant
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B A ¢ (Fig. 93) divided into a number of little siyuares by hines
parallel to the axes, and let us take the sides of these squaresto
C

www. dbr 1y orE. T nt
A B
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be of unit length. Then if we take in succession = 1,2, 3, &¢.
we can easily mark off our gteps. Thus: 1 along A 5 and then 2
to the left; 2 along & B aitd 4 to the left; 3 along 4 B and then
6 to the left; 4 along’a b and then 8 to the left; 5 along A B
and then 10 to ghe.left, and so on. It will be obvious {(by
pp- 98, 99) that (}J.r points all lie upon a straight line through
A, and howe:v’ef many steps we take along & B, followed by
double steps perpendicular to it, we shall always arrive at 2
point on. the same line. If we gave z negative values we should
Ob??'hlﬂlat part of the line which lies in the third quadrant
B! A ¢’. Hence we see that y = 2z is the equation to a straight
~Jine which passes through .
N/ Let us take another example. Suppose that the rectangle
z

.’/'/

16 units in rectangle
Fig. ¢4

16 unifs in square
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contained by y and a length of 2 units, always contains as
many units of area as there are square units in 22 (Fig. 94). Our
relation irx fhis ease may be expressed by 2y = 22, and we have
the following series of steps from & to points of the series:—

iid-4, 2412 3448,
4448 941 -3 6+1%-18, &e.

We can by means of our little squares easily follow .out.
the operations above indicated; we thus find a series of
poinis like those in the quadrant B A c of the ﬁgqr\é.\'(See
Fig. 95.) If, however, we bad taken z equal to the negative
quantities - 1, ~ 2, - 3, — 4, ~ 5, — 6, &e., we should have
found precisely the same values for v, becausg We have seen
that (- o) X (- a) = a® = (+ @) X (+ a). These negative val-

ues for = give us a series of points like those in the quad-
Www.g‘brau]ihrary.org_in
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Tant B’ A ¢ of the figure. It is impossible that any points of
the series should lie below B 4 B/, because both negative
and positive values for z give when squared a POS:itl"e value
for the step ¥, so that no possible z-step Would. give a Dega-
tive y-step. The series of points obtained in this fashion are
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found to lie upon a curve which is one of those shadows of a
circle which we have termed parabolas.

Hence we may say that 2y = 2? is the equation to a
parabola.

This method of plotting out curves is of great value, and
is largely used in many branches of physical investigation.
For example, if the differences of successive x-steps denotf‘x
successive intervals of time, and y-steps the corresponditg
heights of the column of mereury in a barometer abovelsbme
chosen mean position, the series of points obtaine@will, if
the intervals of time be taken small enough, pregest the ap-
pearance of a curve. This curve givesa graphi@zﬂ' representa-
tion of the variations of the barometer farithie whole period
during whi I_E%Siibregél)_’gg have been plq't{qd f]llt. Barometrie
curves Tor the preceding day are nowggtven in several of the
morning papers. Heights correspetiding to each instant of
time are in this case generally registered automaticaily by
means of a simple photographie apparatus.

The plotting out of curves from their Cartesian equations,
usually termed curve traciy, forms an extremely interesting
portion of pure mathematics, It may be shown that any
relation, which deds“riot involve higher powers of z and ¥
than the secondy, is the equation to some one of the forms
taken by the shadow of a circle.

S
;S"t §12. Of Complex Numbers

’,\Wé shall now return to our symbol of operation ¢, and in-
/~quire a little closer into its meaning. Let the point ? (Fig. 96)
be denoted as before by A  + i - M P, g0 that we should read
this result: Step from a to M along a B, and from M to ' along
the same line (where M P’ = m p), finally rotate M ¢’ about M
counter-clockwise through a right angle; m ’ will then take
up the position M p. Now let m @’ be taken equal to A P,
then AM +¢-M Q" will mean: Step from a to m and then
from wm perpendicular to A M to the left through a distance,
M Q’, equal to A P. Since however Mg = AP =AM+ MP
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=MP+?Q, PQ must beequalto A M and\We can read our
operation
AMI¢-(M PVv{*MR/ﬂ:Brauljbl -ary.org.in

which denotes two successive steﬁs a.t right angles to a M,
namely m » followed by the stepB4’. Suppose now we wished
to rotate this latter step through a right angle counter-
clockwise, we should have! to ‘introduce before it the symbol
t,and MP +7-p g wolld mgmfy the step M p followed by
the step P @ at rights angles to it to the left. Now P @’ is equal
to A 31, and hencg fhe result of this operation must bring us
to @, a point ON ¢ which might have been reached by the
simple opera.ﬁum 0+ 1. aq Thus we may put

\“0+1 AQ=AM+7-(MP+1 -PQ)
= AMAt-MP+Ei-2-PQ;

or; m\rme the quantities o @, A M, M P, and P Q here merely
(déniote numerical magnitudes, and since as such A g =M P
o~
\‘ﬁiﬁdAM = P @, we must have
C=AM+t-2-AM,
or —AM=1-1-AM
Thus the operation 7 is of such 2 character that repeated
twice it is equivalent to a mere reversor, or, as we may
€xXpress it symbolically,

1=14
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This may be read in words: Turn a step eounter-clock-
wise through a right angle, and then again counter-clock-
wise through another right angle, and we have the same
result as if we had reversed the step. Now we have seen
(p. 132) that if z be such a quantity that multiplicd by itself
it equals a, z is termed the square root of ¢, and written
va. Hence since

N
LN

##=~1, wemay writez = v — 1, A\

N\
\

This symbol is completely unintelligible so far g3-quaniity
is concerned; it can represent no quantity cgnee’ivable, for
the squares of all conceivable quantities age\pusitive quan-
tities. For this reason v— 1 is somethne%termed an tmagt-
nary qugnidunLreated-howgever as a sy?r’ébbl of operation V=1
has a perfectly clear and real mearﬁngf it is here an instruc-
tion to step forwards a unit length'and then rotate this length
counter-clockwise through a right angle.

Any expression of the forfin z + v~ 1 ¥ is termed a com-
plex number.

Let P be any poiz{f;z\determined by the step AP=4aM
+vV—1mup, andjéb\r, x, ¥ be the numerical vahtes of the
lengths 4 P, o M, \and » m. It follows from the right-angled
triangle P ashythat r* = 72 4 4% The quantity r is then
termed the;w\wdulus of the complex number z + V- 1.

Furig&r let the angle M A P contain # units of angle; then

~O sing = 22 _¥ AM @

— =% gogfl=—==
AP 1 r 7

or ¥ =rsinf, =z =rcosh.

The angle ¢ is termed the argument of the complex num-
ber. Here r and ¢ are the polar co-ordinates of p, and we are
thus able to connect them with the Cartesian co-ordinates;
they are respectively the modulus and argument of the com-
ple}-{ number which may be formed from the Cartesian co-
ordinates. Since 7 is merely numerical we may write the
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complex number z+ v — 1y in the form r - (cosf + v—1
sinf), or as the product of its modulus and the operator

cosf + vV — 1 sind,
which depends solely on its argument ¢, Hence we may in-
terpret, the step
AP=r- (cosf+ v— 1 sinf) ~
as obtained in the following fashion: Rotate unit length from

a5 (Fig. 97) through an angle 0, and then stretch itintheYatio
of 7: 1. The latter part of this operation will be signified by the

cf R
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modulus r, €he former by the operator (cosf + V- 1 sind).
Thus if asb-be of unit length and lying in 4 3, We may read—
&

N\ AP =r7-(cosf+ +/-1 sinf) - A D,
atd we look upon our complex number as a symbol denoting

(the combination of two operations performed on a unit step

\‘:

AD,

Starting then from the idea of a complex number a3 de-
noting position, we have been led to a new operation repre-

sented by the symbol cosf + v~ 1 sinf. This is obviously
a generalized form of our oid symbol V- 1. The operator

cosf + v— 1 sinf applied to any step bids us turn the step
through an angle 6. We shall see that this new conception

has important results:
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§13. On the Operation which turns a Step through a
given Angle

Suppose we apply the operator (cosf + v/~ 1 sind) twice
to a unit step. Then the symbolic expression for this opera-
tion will be

(cosf + v — 1sinf)(cosd + v — 1 sint),
or (cosfd + v'— 1 ginh)2 \

But to turn a step first through an angle 8 and then through
another angle & is clearly the same operation as, Lurmng it
by one rotation through an angle 20, or as applynﬂ the op-
erator cos28 + v— 1 sin28. Ience we aren ’a}_ﬁe to assert

the equivalence of the operations expressed By the equation—
www . dbrauli "y .Or, m

{cosf + vV — 1 sind)? = cos28 -}\N\’ 1 sin20.

In like manner the result of turnmg a step by » operations
through successive angles equalife’§ must be identical with

the result of turning it at or;c(rthrough an angie egual to #
times 6, or we may write ~

{cos + v'— L. s;fnﬁ)" = cosnf + v — 1 sinné.

This important eq&{\ralence of operations was first expressed
in the above syrabolical form by De Moivre, and it is usnally
called after hlm 'De Moivre’s Theorem.

We are 19w able to consider the operation by means of
which afsfep a P can be transformed into another a . We
must, %viously turn A P about A counter-clockwise till it
cm:;rcldes in position with a @; in this case p will fall on ?/,
“Sp“that A = A p. Then we must stretch a ' into 4 q; this
will be a process of multiplying it by some quantity p, which
is equal to the ratio of 4 g to 4 7',

Expressing this symbolically, if ¢ be the angle P 4 @, We
have
(cosp + v~ 1sing) - ap =4 P,
p-(cosp+ V—Tlsing) . sp=p.AP¢ = 4q.

This last equation we can interpret in various ways:



Turning a Step through a Given Angle 175

(i) p- (cosp+ vV—1sging) is a complex number of which
p is the modulus and ¢ the argument. Hence we may say
that to multiply a step by a complex number is to turn the
step through an angle equal to the argument and fo alter
its length by a stretch represented by the modulus.

(ii) Or,again, we may consider the step A  (Fig. 98) as itself
representing & complex number, -+ V- 1 g, or if v be the

pQ O\
P R

v £
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scalar value of a® and & the apgleaBA T, we may _put
AP = r{cosf + V= 1 sin). Similagigys ¢ will be & complex
number, and its scalar magnitude’ (= p - & P’ = pr) will be
its modulus, while the angle % q = 6 + ¢ will be its argu-
ment. We have then the fqllé%fing identity—

plcosd + V:_iSiﬁ(f;) .rlcosp + V-1 ginf) =
pr -, ({o}%«k é 4+ V= 1 cosd + b).

This may be read in two ways:

First, thespreduct of two complex numbers is itsel.f a com-
plex number, and has the product of the moduli for 1ts
modulu§)the sum of the arguments for its argument.

Oraecondly, if we turn unit step through an angle ¢ and
gi\\fe"’a, stretch r, and then turn the result obtained through

“\art angle ¢ and give it a stretch g, the result will be .t}:.le SAMme
as turning unit step through an angle 0 + ¢ and giving 1t &
stretch equal to p 7.

Thus we sce that any relation between complejx numbers
may be treated either as an algebraieal fact relating to 31'10h
numbers, or as a theorem concerning gperations of turning

and stretehing unit steps.
(iii) We may consider what answe
gives to the question: What is the ratio O

A
Al

r the above identity
f two directed steps
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A q and A P? Or, using the notation suggesteu on p. 41, we

ask: What is the meaning of the symbol %‘, ? Astep like ap
¥

(or A @) which has magnitude, direction, and sense is, as we
have noted, termed a vector. We therefore ask: What is the
ratio of two vectors, or what operation will convert one into
the other? The answer is: An operation which is the produetiof
a turning (or spin) and a stretch. Now the stretel is a sqalal
quantlty, a numerical ratio by which the scalar rmgmtude
of A p ig connected with that of a q. The stretg‘j‘;”c herefore
is a scalar operation. Further, the turning or/spini converts
the direction of a P into that of A @, and if~obviocusiy takes
place by spinning A p round an axis pérpéndicular to the
plane of the paper in which both A and a q lie. Thus the
second PHHt U tHEP Gperstsdh by Whl\sh we convert A P into
A @ denotes a spin (counter- clockw;se) through a definite
angle about a certain axis. The ‘amount of the spin might
be measured by a step takem along that axis. Thus, for in-
stance, if the spin were through 6 units of angle, we might
measure § units of length along the axis to denote its amount.
We may also agree £0 take this length along one direction of
the axis (*‘out f}&}n the face of the clock”) if the spin be
counter-clockwise, and in the opposite direction {*‘behind
the face of\{le clock™) if the spin be clockwise. Thus we
see that! our spinning operation may be denoted by a line
or syé\p Baving magnitude, direction, and sense; that is, by
a gector. We are now able to understand the nature of the
.. xatio of two vectors; it is an operation consisting of the prod-
Juct of a sealar and a vector, This product was termed by
Sir William Hamilton a guaternion, and made the founda-
tion of a very powerful calculus.

Thus a quaternion is primarily the operation which con-
verts one vector step into another. It does this by means of
a spin and a stretch. If we have three points in plane space,
the reader will now understand how the position of the
third with regard to the first can be made identical with
that of the second by means of a spin and, a stretch of the
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step joining the first to the third, that is, by means of a
quaternion.?

§14. Relation of the Spin to the Logarithmie Growth
of Unit Step

Let us take a eircle of unit radius and endeavour to find\
how ifs radius grows in deseribing unit angle aboutathe
centre. Hitherto we have treated of growth only in thedi-
rection of length; and hence it might be supposedithat the
radius of a circle does not *‘grow” at all as it revbives about
the centre. But our method of adding vector.Steps suggests
atonee an obvious extension of our concephion'of growth. Let
astep A  (Fig. 99) become A qQ as it rotafes about 4 through
the angle r 4 , then if we marked offaiau dis By ggual
to A ®, would be the scalar gtewth of a p; that s, its

RN :"__% Q

A s ~ : ) P
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growth in the dir tlo;l of its length, But if A » be treated
88 4 vector (see g, 139)

N
O AQ=AP+PQ
\ ¥
e

or the dﬁe"bted step P @ must be added to a P in order to con-
vert itdhto A @; P  may be thus termed the directed growth
of 4\’13:;1’: we join P P/, we shall have » q equal to the sum of
22and p' . Now if the angle » A P’ be taken very small
2 il be ultimately perpendicular to & p, and this part
of the growth »q might be represented by w/:_f . 5
Hence we are led to represent a growth perpendicular to a
Tolating line by a scalar quantity multiplied by the symbol
V-1,
We can now consider the case of our circle of unit radius.

L The term “'streteh” must be considered o ipelude 8 squeeze Or & streteh
denoted by 4 seqlay quantity p less than unity.
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Let o » (Fig. 100) be a radius which has revolved through an
angle # from a fixed radius o A, and let o @ be an adjacent po-
sition of o ® such that the angle @ 0 P is very small. Then rq
will be a small arc sensibly coincident with the straight line

Fie. 100 S

P @, and the line P @ will be to all intents ar{d. purposes at right
angles tovo BbHeilpetposkiain 0 @ we must take a step PQ
at right angles to o ». This we reppésent by v— 1 q 2. Since
the radius of the circle is unity the'are @ », which equals the
radius multiplied by the anglelao p (see pp. 130, 131), must
equal the numerical value of the angle @ o ». Or the growth
of o P is given by V= 1x angle q o . Now since o p remains
of constant length ag-ib revolves about o, it is equally mul-
tiplied (i.c., by thﬁe\‘{actor unity) in deseribing equal angles.
Tt thus satlsﬁes our definition of growth at logarithisic rate

(see p. 160 Jn “this case what value shall we give to the
rate for upit-angle?
"\

N\ -
Tt st equal ?1; divided by the ratio of the angle g0 ®

'S

fo unit angle = FQ = V=1 si is unity.
\ £ OF X angle QO B 1 since O P 15 unity

Th.us o » is growing at logarithmie rate v'— 1 as it describes
unit angle; that is to say, the result of turning o p through
unit angle might be symbolically expressed by eV~ Hence

the result of turning o ® through an angle ¢ must be eV,
We may then write

OP =04 ev-10,
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Drop » M perpendicular to o o and produce it to meet the
eircle again in ¢*, then by symmetry M p = M ¥/, and we have

or=0M+V—-1MP,
or=0M— VvV-1M7,

Now since o » and o »’ are of unit magnitude,

o
=

|

. PM
=0M, sinf=—"—=PM, N
P oOF AN

cosf =

Q

Also the angle P’ oM equals the angle M o P, but, according
to our convention as to the measurement of anglés;'it is of
opposite sense, or equals — 6. Thus we must wiite

0P =04 e“f'—la.:\\:
Substituting their values, we dedue& ft& sybolipairpesults

eV = cosb +- ‘\/:- v sinﬂ} @
eV = pos AV~ 1 8ind

Further, ~N

01’7@?’:2\/—1?1\&

c\{‘+’or’=20M

s e N TV | sinB} i
eV 4 g=V79 = 2 cosh
~E

Thq&&élues for cos® and sind in terms of the exponenti_al
e weresfirst discovered by Euler. They are meaningless
he form (i) when cosf and sing are interpreted as mere
Mmerical ratios; but they have a perfectly clear apd definite
Meaning when we treat each side of the equation in fm:m (l)
a8 a symbol of operation. Thus cost + v/~ 1sinf 3'pp,hed to
unit step directs us to turn that step without altering .1ts
length through an angle §; on the other hand, e-‘/:w applfed
%o the same step causes it to grow at logarithmie rate unity
Perpendicular to itself, while it is turned through the angle

6. The two processes give the same result.

that is,
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§15. On the Multiplication of Vectors

‘We have discussed how vector steps are to be added, and
proved that the order of addition is indifferent; we have also
examined the operation denoted by the ratio of twao vectors.
The reader will naturally ask: Can no meaning be given to
the product of two vectors? Q.

If both the vectors be treated as complex numbers,cor-4s
denoting operations, we have interpreted their prodist ‘(see
p. 175) as another complex number er as a r@s@fa.nt op-
eration. Or again we have interpreted the preduct of two
vectors when one denotes an operation and the ctber a step
of position; the product in this case is a di¥eétion $o spin the
step through a certain angle and thenstreteh it in a certain
ratio. BT seither of ¥hea cases exialhins what we are to
understand by the product of twq steps of positicn.

Let a p, a g (Fig. 101) be two such steps: What is the mean-
ing of the product Ao ® - 4 Q2 Were 4 P and A g merely scalar

P ’/\Q
, &:‘L""—“‘—'P
N\ Fic. 101

quantities then their product would be purely scalar, and we
should haveno difficulty in interpreting the result 4 p - P @ 88
another .g@lar quantity. But when we consider the steps A P,

') Y ¥
Fie, 102

P Q to possess not only magnitude but direction, the meaning
of their product is by no means so obvious.

I A g were at right angles to o P (see Fig. 102), we should
naturally interpret the product A » - 4 g as the ares of the
rectangle on A Q and A P, or as the ares of the figure Q AP R.
Now let us see how this area might be generated. Were we
to move the step 4 q parallel to itself and so that its end 4
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always remained in the step A p, it would desecribe the ree-
tangle @ A ? = while its foot A deseribed the step a ». Hence
if AP and 4 g are at right angles we might interpret their
product as futlows:

The product 4 P - A @ bids us move the step A g parallel
to itself sc that its end A traverses the step a p; the area
traced cut by 4 Q@ during this motion is the value of the prod-
uct AP- 4 g, O

It will e noted at once that this interpretation, although
suggested by the case of the angle q A P being a right angle,
Is entirely independent of what that angle may.be. If ga®
be not a right angle the area traced out agegrdimg to the
above rule would be the parallelogram on-4'F, A @ as sides.
Hence the interpretation we have discovered for the prod-
uct AP- 4 gives us an mtelﬁgiblg@&ningrawﬁ%l@’iﬁ' be
the angle q & ». ) ' '

There is, however, a difficulty which we have not yet solvsad.
An area i3 a directed quantity(see p. 123), and its direction
depends on how we go reiind its perimeter. Now the area
Q4 P & (Fig. 103) will be'positive if we go round its perimeter
counter-clockwise, O{"from A to P; that is, in the direction

¢. &<\ R
S
o \os / - _a'f
¥/ A ” P
N\ Fic. 103 T

of ﬂ.lg\:ﬁf‘st step of the product or in the direction of motion
of the second or moving step. Thus the product A®-4Q
_ (Wil be the area q 4 P & taken with the sign suggested by the
) 5tep A p. The produet a g - A P will be formed by c-au.smg the
Step A P to move parallel to itself along 4 @, and it 15 t%lere-
fore also the area of the parallelogram on 4 @ and & F; but
it is to be taken with the sign suggested by 4 @, or it is the
area p A q g,
By our convention as to the sign of areas,
PAQR=—QAPE,
ar AQ.Apz—AP‘AQ»
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Hence we see that, with the above interpretation, the prod-
uct of two vectors does not follow the commutstive law
(see p. 41).
1f we suppose the angle @ A » to vanish, and the vector
A Q to become identical with a P, the area of the enclosed
parallelogram will obviously vamsh also, Thus, if & vector
step be multiplied by itself, the product is zero; that is,. £\

arp-ap={ap)=0 ,~\

N 3

If we take a series of vector steps, a, B, v, &\ &c then
relations of the following types will hold a.mong‘tucm.

a? =0, g =0, =0 \ “;_'02 &e,
af = - Ba, ary = — Y4, N ﬁ'}’:"‘?far
Sy ég’wcfﬂaj’r&léi_brary.org.in D

\

A series of quantities for whichfthese relations hold was
first made use of by Grassmann and termed by him allernate
wunats.

The reader will at once, observe that alternate units have
an algebra of their owaiNThey dispense with the commuta-
tive law, or rather,r’gé;\ﬁace it by another in which the sign
of a product is made to alternate with the alternation of 1ts
components. Their consideration will suggest to the reader
that the rulés‘ef arithmetic, which he is perhaps accustomed
to assume a8 necessarily true for all forms of symbolic quan-
tity, Have only the comparatively small field of application
to gCalar magnitudes. It becomes necessary to consider
mthem as mere conventions, or even to lay them aside entirely
as we proceed step by step to enlarge the meaning of the
symbols we are employing.

Although 2x2=0 and 2x 3 = —3 X 2 may bhe sheer
nonsense when 2 and 3 are treated as mere numbers, it yeb
becomes downright common sense when 2 and 3 are treated
as directed steps in a plane.

_ Let us take two alternate units a, 8 and interpret the quan-
tity aa -+ b, where a and b are merely scalar magnitudes.
If o A (Fig. 104) be the vector o, ae signifies that we are t0
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Fic. 104 o\

stretch ¢ A to 0 A’ in the ratio of 1 to a. Tol;this. O_A’ tfrte f?}::

to add the vector o’ derived from @B giving i
stretch b. Hence if A’ » = 0 8/ the“i\‘{ézd of b B Fa[YeSbHtS the
quantity ac + b8, which is termgefan alternate number. Let
0 Q represent a second alternate number o' + &8, obtz?med
by adding the results of applying two other stretches a 'and
b to the alternate units eahd 8. In the same way we might
obtain, by adding theresults of stretching three alternate
nits (a, 8, ), altetnate numbers with three terms (of f’che,
form aqq + b3 + SQQ, and so on. If we take the ;m'oduct-o as
many alternaté\numbers as we have used alternate units in
their comppdition, we obtain a quantity called a determinant,
which plays’a great part in the modern theory of quantlty.
We shalh Confine ourselves here to the consideration of a
dete.riﬁlﬁant formed from two alternate units. Such a d?]tjell‘;
m\ihgﬁﬂt will be represented by the product o P-0Q W cf
oetording to our convention as to the multiplication o
Vectors equals the area of the parallelogram on 0 ?, © ‘%135
sides, or (by p. 113) twice the triangle Qo ™. Throu%heg
aw ¢ @ A” parallel to o B, and p @ B” parall'el to 04, -
04" = ¢/ g and 0 8" = ¥’ 8. Join B’ Q, then twice 1.:he trlaglgt e
B"Q P equals the parallelogram B” p. Hence, addm% tlo ‘;m
these the parallelogram a’ B we have the para Ie Egrthe
A"B" together with twice the friangle B @  equal. 0 e

Parallelogram B’ A%, or to twice the triangle 3" 0 P. bu
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triangle B’ 0 P equals the sum of the triangles 0 4 2', 8 Q¥
and o P q. It follows then that the parallelogram 4’ 3" must
equal twice the triangle o » @ together with twice the triangle
o @ 8. Now twice the latter equals B’ A”. Hence the differ-
ence of the parallelograms A’ B” and B’ 4" is equal to twice
0 Pq. The parallelogram A’ 8" is obtained from the paral:
lelogram A B by giving it two stretches a and & parallel 10
its sides, and therefore its area equals ab’ times the areg\a'B.
Similarly B’ A" equals ba’ times the area A B; but, e area
A B itgelf is a8. Thus we see that the idenfity

0P'0Q=A’B”—Brﬁv ,<
may be read N
R EE B 8) ~ (bl S baNap.

Or, the determinant is equal to the parallelogram on the
alternate units magnified in the 'ratio of 1 to ab’ - ba’. It
obviously vanishes if ab’ —bof = 0, or if a/b = a’/b’. In this
case P and q lie, by the property of similar triangies, on the
same straight line through o, and therefore, as we should
expect, the determinhant o p - o q is zero.

The reader will ‘ind little difficulty in discovering like
properties forPa determinant formed from three alternate
units. In tHis case there will be a geometrical relation be-
tween cerfain volumes, which may be obtained by stretches
in the%né.nner explained on p, 127.1

We have in this section arrived at a legitimate interpre-
~tabion of the product of two directed steps or vectors. We
find that their product is an area, or according to our previous
convention (see p. 123), also a directed step or vector whose

direction is perpendicular to the plane which contains both
steps of the product.

. *1 have to thank my friend Mr, J. Rose-Innes for suggesting the introdue-
tion of the above remarks as to determinants. I may, perhaps, be allowed to
add that by treating the alternate units, like Gragsmann, as points, and the
alternate number as their loaded centroid, & determinant of the second order

is represented geometr.ica.lly by a length, and we thas obtain for one of the
Jourth order & geometrical interpretation as a volume.
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§16. Another Interprelation of the Product of Two
Vectors

The rescler must remember, however, that the result of
the preceding paragraph has only been obtained by means of
a conveniior; namely, by adopting the area of a certain
parallelogracn as the interpretation of the vector products
Only as Jong as we observe that convention will our deduc-
tions with regard to the multiplication of vectors be tide.
We might have adopted a different convention, and should
then have come to a different result. It will belinstructive
to follow out the results of adopting another convention, if
only by so doing we can impress the reader with the fact
that the fundamental axioms of any branch of exact science
are based rather upon conventicgéy thia WpeaY b#versal
truths. O

Suppose then that in interpieting the product A P - A QWE
consider A P to be a directed) step which represents the area

Fic. 105

DB ¥ g (Fig. 105). This area will be perpendicular to the di-
rection of  p, and we might assume as our convention that
the product 4 » - A @ shall mean the volume traced out by t}:xe
step A @, moving parallel to itself and in such wige that its
end & takes up every possible position in the plfme DEFG.
This volume will be the portion of an oblique cylinder on the
base pE ¥ ¢ intercepted by 2 plane parallel to ‘that ba,s:e
through q. We have seen (p. 129) that the volume of this
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eylinder is the product of its base into its height, viz. the
perpendicular distance A H between the two planes. Now
let r and p be the scalar magnitudes of A P and 4 ¢ respec-
tively, and € = the angle P A Q. Then A B = p cosé, and the
volume = AP- A Q =7 p cost, for » represents the number
of units of area in b E F 6. Hence, since a volume is 2 purely
numerical quantity having only magnitude and no direda,
tion, we find that with this new convention the produ@}sgf
two vectors is a purely scaler quantity, or our new ¢onven-
tion leads to a totally different result from the old. <

Further, since » and p are merely numbers, #p= ¢ 7, and
thus aP-aqg=rpcosf=prcosf =aq-a@y if aqg be
treated as the directed step which represents an area con-
taining g units of aren~ Thug in this ca,s(;%he vector product
obeys the commutative law, Which‘aéa.in differs from our
previous result. We can then treat the product of two vec-
tors either as a vector and as.ad“quantity not obeying the
commutative law, or as a scal@r and as a quantity obeying
the commutative law. We aré at liberty to adopt either con-
vention, provided we rgalhtain it consistently in cur resuit-
ing investigations.l ,{)

The method of ‘v%’ing our interpretation, which has been
exemplified in the case of the product of two vectors, is
peculiarly fryitfal in the field of the exact sciences. Each new
iﬂterpfﬁtﬁt@l may lead us to vary our fundamental laws,
and ust}“ﬁhose varied fundamental laws we can build up &
new (Galculus (algebraic or geometric as the case may be).
THe Tesults of our new calculus will then be necessarily true
“for those quantities only for which we formulated our funda-
mental laws. Thus those laws which were formulated for
pure number, and which, like the postulates of Euelid with
regard to space, have been frequently supposed to be the
only conceivable basis for a theory of quantity, are found to
be true only within the limits of scalar magnitude. When we

! In the mathematical treatment of physical preblems both conventions are

often adopted together. Thus in » single eguati ucts
may be combined,—J RN, gle equation scalar and vector pro
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extend our conception of quantity and endow it with direc-
tion and position, we find those laws are no longer valid.
We are compelled to suppose that one or more of those laws
cease to hold or are replaced by others of a different form.
In each case we vary the old form or adopt a new one to
suit the wider interpretation we are giving to quantity or
its symhols. O

7 '\' A

§17. Position in Three-Dimensioned Space)

Hitherts we bave been considering only’pésif’;'ion in a
plane; very little alteration will enable ug-{e Consider the
position of a point P relative to a point 2as determined by

a step 4 P taken in space. N,

We may first remgrk, however, %g&i%ﬁﬁ]ﬁﬁyﬁéﬁﬁ A
and B arc sufficient to determine(in"a plape the position of
any third point P, we shall regulire, in order to fix the posi-
tion of a peint P in space,fo'be given three points 4, B,
not lying in one straight dife. If we knew only the distances
of P from two points a&hd B, the point P might be anywhere
on a certain circle,§hich has its centre on the lire 4 5 and
its plane perpendietlar to that line; to determine the posi-
tion of P on this. tircle, we require to know its distance from
a third poighe. Thus position in space requires us o hflve
at least. fhree non-collinear points (or such georqetrl_cal
figuresiasare their equivalent) as basis for our determination
of position. Space in which we live is termed space of three
. dimensions; it differs from space of two dimensions In Te-
Juiring us to have three and pot two points as a basis for
determining position. :

Three points will fix a plane, and hence if we are given
three points 4, B, ¢ in space, the plane through them will
be 2 definjte plane separating all space into two halves. _In
one of these any point p whose position we require must lie.
We may term one of these halves below the plane a.n:fi the
other abose the plane. Let » v (Fig. 106) be the perpencht_:ulal‘
from » upon the plane; then if we know how to find the point N
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in the plane & B ¢, the position of p will be fully defermined
<0 soon as we have settled whether the distance ¥ N is to be
mensured above or below the plane. We may sefile by eon-
vention that all distances above the plane shall be con-
sidered positive, and all below negative. Further, the position
of the point N, upon which that of P depends, may be detery

N
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mined by any of the methodswe have employed to fix posi-
tion in a plane. Thus if ¥ at"be drawn perpendicular to A B,
we have the following ifistruction to find the position of P:
Take a step A M along’A's, containing, say, = units; then take
a step M N to the'right and perpendicular to a B, but still
in its plane, cotaining, say, y units; finally step upwards
from N the distance N P perpendicular to the plane A8 G,
8aY, throp\@; 'z units. We shall then have reached the same
point B\as'if we had taken the directed step a ». If z had
been \hegative we should have had to step backwards from
Ayif 'y had been negative, perpendicular to 4 B only to the
<Jeft; if 2 had been negative, perpendicular to the plane bufb

downwards. The reader will easily convince himself that by
observing these rules as to the sign of z, y, z he could get
from A to any point in space.

Let 4 denote unit step along A B, 7 unit step to the right
perpendicular to A 8, but in the plane 4 B ¢, and % unit step

perpendicular to the plane a B¢ upwards, from foot to
kead. Then we may write

AP=g-ity-j+z-k
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where z, i, 2 are scalar quantities Ppossessing only magnitude
and sign; but 7, 7, & are vector steps in three mutually rec-
tangular directions.

i 2\ A
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The step 4 » (Fig. 107) may be régarded as the diagonal of
Solid rectangular figure (a right sit-face, as we termed it on
P-126), and thus we shall get tothe same point by traversing
any three of its non-parallel ‘sides in succession starting frf)m
A. But this is equivalent o saying that the order in which
we take the directed &teps z - 7, ¥ - 5, and z - k is indifferent.

The reader will teadily recognize that the sum of a num-
ber of successive]'ls\eps in space is the equivalent to the step
which joins tl{'éistart of the first to the finish of the l.ast; and
thus a nu{@b’er of propositions concerning steps in space
similar, toythose we have proved for steps in a plane may be
dEdQQ‘SQ‘-” By dividing all space into little cubes by three
Systems of planes mutually at right angles, we may plot
~Qub surfaces just as we plotted out curves. Thus we shall
hoose any values we please for z and y, and suppose !;he
Magnitude of the third step related in some constant fashion
to the previous steps. For example, if we take the rectangle
under z and some constant length a, always equa'l to t‘h? dif-
ferences of the squares on £ and y. or symbolically if we
take az = 2> — 4, we shall reach P by taking the step
Gt )

a

AP=x-¢+y 3+
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The series of points which we should obtain in this way
would be found to lie upon a surface resembling the saddle-
back we have deseribed on pp. 82, 83. The above relation
between z, xz, and y will then be termed the equation to a
saddleback surface.

We cannot, however, enter fully on the theory of steps
in space without far exceeding the limits of our preseub
enterprise. \

+ A\
A\

§18. On Localized Vectors or Rotorg~\

Hitherto we have considered the positio\0f a point
relative to a point A, and compared it with*ihe position of
another'peinthyardlbtive degthe same peint a. Thus we have
considered the ratio and product of‘.t‘ki‘)’ steps A P and 4 Q.

We have thereby assumed eitkide¥that the two steps we
were considering had a commqnéxiﬁremity A, or at least were
capable of being moved parallel to themselves till they had
such & common extremityi*Such steps are, as we have re-
marked, termed vector £feps.

Suppose, howeve;z,j‘ghat instead of comparing the position
of two points » ?ﬁa‘q relative to the same point A, we com-
pared their positions relative to two different points 4 and 5.
(See Fig. 5)8‘) The position of P relative to a will then be

2 b
A\ e
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determined by the step A P and the position of Q relative to
B by the step B Q.

Now it will be noted that these steps o P and 8 @ have
not only direction and magnitude, but have themselves posi-
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tion in space. The step A P has itself position in space relative
to the step B @. It is no longer a step merely indicating the
position of » with regard to a, but taken as a whole it has
itself attained position when considered with regard to the
step B Q. This localizing, not of a point P relative to a point
4, but of & step A P with regard to another step B @, is a new
and importarnt conception. Such a localized vector is termed {
a rotor from the part it plays in the theory of rotati qr
spinning bodies. AN
Let us try and discover what operation will convert the
rotor B Q into the rotor a P; in other words:’Wfla"ﬁ' is the

. AP AN
operation D‘;‘? ? In order to convert B Qin{o A » we must

make the magnitude and position of ; %ﬁﬁgsas?ﬁgagsgﬂﬁ of
aP. Its magnitude may be made the same by mehns%r'a
stretching operation which stretche$#'q to a . This stretch,
as we have scen in the case ofta E;uatemion (see p. 176);
may be represented by a nufherical ratio or a mere scalor

quantity. Next let cp (Fig® 109) be the shortest distance
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between the rotors 4 p and B q; then ¢ p will be pe-rp?ﬁdl'e-
Ular 6 both of them.! 5 @ may then be made to coincide it
Position with a p by the following process:

* That the shortest distance between two lines is perpendlclll{-f t,orzo ]?ng
them may be proved in the following manner. Let us suppase the Ima?t,h;
¥ Perfectly smooth and very thin rods, and let two rings, 00¢ 04 e]lide along
®onnocted by g strotched elastic string, Obviously the rings will L2807
the rods till the elastic string takes up the position of the stortest ’
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First turn B g about the shortest distance, ¢ p, through
some angle, @ b @', till it takes up the position 1’ ¢ parallel
to a p; then slide 8’ @" along the shortest distance parallel {0
itself till its position coincides with A p. If we wished 8’
to coineide point for point with A p, we should further have to
slide it along A p till " and A were one.

Now the two operations of turning a line about another
line at right angles to it, and moving it along that ling, are
just akin to the operations which are applied to thg g%obve
in the head of a screw when we drive the screw intca'block of
wood ; or again to the handle of a corkscrew when &g wist the
screw into a cork, The handle in the one case dod the groove
in the other not only spin round, but go forward in the di-
rection of tha serewy axis. 0§u9h a movementialong an axis, and

at the same time about it 1t, is termed altwist. The ratio of the
forward space described to the angle.turned through during
its description by the head of the.Screw is termed the pitch
of the screw. This pitch will xéain constant for all forward
spaces described if the thread of the screw be uniform. Thus
turn an ordinary corkgerew twice round, and it will have
advanced twice as farphrough the cork as when it has been
turned only once fourid. Let us see whether we cannot apply
this conception(of a screw to the operations by which we
bring the rotox B Q into the position of the rotor 4 ». Upon a
rod placed ab‘c b, the shortest distance, suppose a fine screw
cut withisuch a thread that its pitch equals the ratio of ¢ D
to the angle @b . Then if we suppose B @ attached to a
nutapon this screw 2t b, when we turn B @ through the angle
QD q', the nut with 3 @ will advance (owing to the pitch
we have chosen for the screw) through the distance p c. In

for that will correspond to the least possible tension of the string Suppose
that the string is then not at right angles to one of the rods, say, at the
peint ¢. By holding the string firmly at k, we might shift the ring at ¢ along
therod to ¢, se that the angle E ¢’ ¢ should be a right angle. Then since ¢ is 8
right angle ¢ & would be greater than ¢’ g, being the side opposite the great-
est angle of the triangle = ¢' ¢. Hence the length of string ¢’ & + 2 D i9 less
than the length ¢ b, or ¢ b cannot be the shortest distance which we have sup-
posed it to be. Thus the shortest distance must be at right angles to both lines.
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other words, B @ will have been brought up to A  and coin-
cide with it in position and direction.

Heues the operations by means of which B  can be made
to coineide with A » are a streteh followed by a twist along a
certain screw.! A screw involves direction, position, and
pitch; a twist (as of a nut) about this axis Involves some-
thinz additional, namely a magnitude, viz. that of the angle
through which the nut is to be turned. Magnitude agsoei-
ated with a screw has been termed by the au’chor\'bf “the
present book a mofor 2 (since 1t expresses the mosb.general
instantaneous motion of a rigid body). Hence the operation
by which one rotor is converted into another may be de-
seribed as a motor combined with a strejeh, This operation
stands in the same relation to two roters as the quaternion
to two vecors. The motor playssoéhisnmbparfank part in
several branches of physical inquiry that the reader will do
well to familiarize himself withthe conception.

The sum of two vector stébs is, as we have seen (p. 139),
a third vector; but unlike Vector steps the sum of two rotors
is in general a motorgonly in special cases does it become
either a rotor or (@ wector. The geometry of rotors and
motors, which we have only here been able to hint at, forras
the basis of the whole modern theory of the relative rest
(Static) and‘%he relative motion (Kinematic and Kinetic) of
invariable)systems.

2 &

§19. On the Bending of Space

p .\’~ 3 . )
¢\ The peculiar topic of this chapter has l_)een position, posi-
tion namely of a point P relative to a point 4. This relative

position led naturally to a consideration of the ggomz_atry of
steps. T proceeded on the hypothesis that all position is rela-
tive, and therefore to be determined only by s stepping
process. The relativity of position was & postulate deduced

i he single per-
1 Tn general the scrow must be followed by 2 glide, unless &
pendj““%aﬂ' (¢ D) to both rotors (8 @ and A P) ﬁ,lsects thel?l-—ﬂ’ RI;L
® «Preliminary Sketch of Biquaternions,’ Proceedings of London

Mathematical Society, vol. iv. p. 383,
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from the customary methods of determining positicn, such
methods in fact always giving relative position. Relativity of
position is thus a postulale derived from experience. The late
Professor Clerk-Maxwell fully expressed the weight of this
postulate in the following words:—

All our knowledge, both of time and place, is essentially relative.
When & man has acquired the habit of putting words together, with-
out troubling himself to form the thoughts which ought to crfe
spond to them, it is easy for him to frame an antithesis betw eeﬁ&hls
relative knowledge and a so-called absolute knowledge, and fo point
out our ignerance of the absolute position of a point ag, a,n inatance
of the limitation of our faculties. Any one, however, who will try
to imagine the state of a mind conscious of knowmg the absolute
position of a point will ever after be content ‘with our relative

kno‘ﬂed%!\ rw.dbraulibrary org.in \ /

It is of such great value to ascerthm how far we can be
certain of the truth of our postuig,tes in the exact sciences
that I shall ask the reader to'weturn to our conception of
position albeit from a somiewhat different standpoint. I
shall even ask him to attemipt an examination of that state
of mind which Profes@r Clerk-Maxwell hinted &t in his last
sentence. )
Suppose we ha(i\a tube of exceedingly small bore bent into
a circular shaps,and within this tube a worm of length A B
(Fig. 110), Then in the limiting case when we make the bore
\ C
A

Fie. 110

1 Maiter and Motion (London: Society for Promoting Christian Knowledge,
1876; p. 20. New York: The Macmillan Co., 1020; p. 12).—LR.N.
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of the tube and the worm infinitely fine, we shall be consider-
ing space of one dimension. For so soon as we have fixed one
point, ¢, on the tube, the length of are ¢ 4 suffices to determine
the position of the worm. Assuming that the worm is incapa-
ble of recognizing anything outside its own tube-space, it
would still be able to draw certain inferences as to the nature
of the space in which it existed were it capable of distinguish-
ing some mark c on the side of its tube. Thus it would notiée™
when it returned to the peint ¢, and it would find thatthis
return would continually recur as it went round in the bore;
in other words, the worm would readily postulate the finite-
ness of space. Further, since the worm would-always have
the same amount of bending, since all parts el a circle are of
the same shape, it might naturally assumg the someness of
all space, or that space possessedthesame-properiiss at all
points. This assurption is preciselyyakin to the one we make
when we assert that the postulates of Euclidian geometry,
which, experience teaches ugtare practically true for the
space immediately about usjare also true for all space; we
assume the sameness of>our three-dimensioned space. The
worm would, howevery have better reason for its postulate
than we have, be duke it would have visited every part of
its own one—dime}'sloned space.

Besides theyfiniteness and sameness of its space the worm
might asser® the relativity of position, and determine its
position-By the length of the arc between C and a. Let us
now make a variation in our problem and suppose the worm
incapable either of making or of recognizing any mark on

~$be tube. Then it would clearly be impossible for the worm
Ao ascertain whether its space were limited or not; it vf!ou_lld
never know when it had made a complete revolution in 1t
tube. In fact, since the worm would always possess the same
amount of bending, it would naturally associate that ben_dmg
with tts physical constitution, and not with the space whzch_ i
was traversing. 1t might thus very reasonably suppose its
space was infinite, or that it was moving in an infinitely long
tube. If the worm thus associated bending with its physical
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condition it would find no difference between motion in space
of constant bend (a circle) and motion in what is termed
homaloidal or flat space (a straight line); if suddenly irans-
ferred from one to the other it would attribute the feeiing
arising from difference of bending to some change wiich
had taken place in its physical constitution. Henee in one-
dimensioned space of constant bend all position is necesseyily
relative, and the finite or infinite character of space wili ve
postulated according as it 1s possible or not to fix a poitthin
it.t >

Let us now suppose our worm moving in a di?ﬁéreht sort
of tube; for example, that shadow of a circle w&’have called
an ellipse. In such a tube the degree of bendiﬁg_g is not every-
where the samg: the worm as 1t passes from the place of least
bending c to '%Eagﬁal?éé‘%’f"ﬁ&é‘t ‘Eending;b,'will pass through
a succession of bendings, and each,point m between € and D
will have its own degree of bending\(Fig. 111). Hence there is

A
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sptnething quite apart from the position of m relative to
“which characterizes the point H; namely, associated with B is
a particular degree of bending, and the position of the point

H in ¢ D is at once fixed if we know the degree of bending
there. Thus the worm might determine absolute position in
its space by the degree of bending associated with its posi-
tion. The worm is now able to appreciate differences of bend,

1 This supposes the cne-dimensioned space of constant bend to lie in a plane;

the argument does not apply to space like that of a heliz {(or the form. of 2
corkscrew), which is of constant bend, but yet not finite.
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and might even form a seale of bending rising by equal dif-
ferences. The zero of such scale might be anywhere the
worm pleased, and degrees of greater and less bend might be
mezsered as positive and negative quantities from that zero.
This zero might in fact be purely imaginary; that is, repre-
sent a degree of bending non-existent in the worm’s space;
for example, in the case of an ellipse, absolute straightness, ¢
a conception which the worm might form as a limit to its
experience of degrees of bend.! Thus it would seem that o)
space of “varying bend,” or space which is not same, ‘posi-
tion is not necessarily relative, The relativity has éeased to
helong to position in space; it has been transferred to the
scale of bending formed by the worm; it has Hedome a rela-
twity of physical feeling. In the case of an elhptlc tube there
are owing to its symmetry four poin b‘?{? LY Beall as H,

E, ¥, and @, but there is the followig/ distinction between
H, ¥ and E, G. If the worm be going,; ‘round in the direction
Jnchcated by the letters ¢ B D E,\8b B or ¥ it will be passing
from positions of less to posxtmns of greater bending, but at
® or ¢ from positions of greater to positions of less bending.

Thus the worm might, easily draw a distinction between H,
Fand g, ¢. It woulQonly be liable to suppose the point H

N\

Fic. 112
and ¥ identical because they possess the same degree of
bending, We might remove even this possible doubt by sup-
posing the worm to be moving in a pear-shaped tube, as in
Fig. 112; then there will only be two points of equal bend,

! Physicists may be reminded of the absolute zero of tempezature.
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like 1 and G, which are readily distinguished in the manner
mentioned above.

We might thus conclude that in one-dimensioned space
of variable bend position is not necessarily relative. There
is, however, one point to be noted with regard to this state-
ment. We have assumed that the worm will associate change
of bending with change of position in its space, but the wox
would be sensible of it as a change of physical state onbg'a
change of feeling., Hence the worm might very resic}ilj e
led into the error of postulating the sameness of.its space,
and attributing all the changes in its bend, reail§ due to its
position in space, to some periodic (if it moves uniformly
round its tube) or irregular (if it moves in-any fashion back-
wards andfonwards)-ahangas to whichils physical consti-
tution was subject. Similar resultsymight also arise if the
worm were either moving in spacé of the same bend, which
bend could be changed by sometexternal agency as a whole,
or if again its space were of Jarying bend, which was also
capable of changing in any ‘fashion with time. The reader
can picture these caseSby supposing the tube made of
flexible material. The worm might either attribute change
in its degree of pr to change in the character of its space
or to change in\its physical condition not arising from its
position in_gpate. We conclude that the postulate of the
relativity.of position is not necessarily true for one-dimen-
sioned\.épaée of varying bend.

Wihien we proceed from one- to two-dimensioned space, we
,Qb'!}h:ih results of an exactly similar character. If we take
Sperfectly even (so called homaloidal) space of two dimen-
sions, that is, 2 plane, then a perfectly flat figure can be
moved about anywhere in it without altering its shape. I
by analogy to an infinitely thin worm we take an infinttely
thin flat-fish, this fish would be incapable of determining
position could it leave no landmarks in its plane space.
So soon as it had fixed two points in its plane it would be
able to determine relative position.

Now, suppose that instead of taking this homaloidal space

/
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of two dimensions we were still to take a perfectly same
space but one of finite bend, that is, the surface of a sphere.
Then let us so stretch and bend our flat-fish that it would
fit on tr some part of the sphere. Since the surface of the
sphere iz everywhere space of the same shape, the fish would
then be capable of moving about on the surface without in
any way altering the amount of bending and stretchin
which we had found it necessary to apply to make the fish
Bt in any one position. Were the fish incapable of ﬂeaying
landmarks on the surface of the sphere, it would bé $otally
unable to determine position; if it could leave at-least two
landmarks it would be able to determine relafive position,
Just as the worm in the circular tube, the-figh without land-
marks might reasonably suppose its spasé infinite, or even
look upen it as perfectly flat (hotad! 191’9311{:101@1‘111[)}11?8
the constant degree of bend and(s retch to its physical
nature, i ]
Let us now pass to some spate of two dimensions which
is not same—to some spadey for example, like the saddle-
back surface we have consitlered on pages 82, 83, which has a
varying hend. In thigiase the fish, if it fitted at one part of
the surface, woul tiot necessarily fit at another. I.f it moved
about in its spage, it would be needful that a continual proc-
ess of bendipg’iahd stretching should be carried on. Thus
every part,bf*this two-dimensioned space would be defined
by the pmticular amount of bend and stretch necessary to
make s fish fit it, or, as it is usually termed, by the curva-
turghIn surfaces with some degree of symmetry there would
Alkgkssarily be parts of equal curvature, and in some cases
the fish might perhaps distinguish between these points in
the same fashion as the worm distinguished between points
of equal curvature in the ease of an elliptic tube. In irregular
surfaces, however, it is not mecessary that such ponts of
equal curvature should arise. We are thus led to conclusions
like those we bave formed for one-dif_nen-‘ﬂ'lonf’d space,
namely: Position in space of two dimensions which is not
same might be determined absolutely by means of the curva-
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W our fish has only to earry about with it a scale of
“,rf‘-"{,.{ of bending and stretching corresponding to various
drf-,ﬂf{;as on the surface in order to determine absolutely
o ! stion in its space. On the other hand, the fish might
Ne I’U'eﬁdily attribute all these changes of bend and streteh to
ey :;ioﬂs of its physical nature in nowise dependent on its
vl jon in space. Thus it might believe itself to have & mozb
p* 4 physical life, a continual change of physical feelifiy,
yprt independent of the geometrical character of the §pace
g ehich it dwelt. It might suppose that space to-be per-
Ii'gcgy gaine, or even degrade it to the “dreary infinity of &

i d.” 1
llomals result, then, of our consideration of\bhe- and two-
. ensioned epheauierfingdihat, if these spaces be not same
4 fm-tiaﬂ pnot homaloidal), we shqp!d” \xby reason of _t?‘eu‘.'
grvature have a means o_f determihing absolute position.
at we see also that a being q)ﬁé];ing in these dimensiong
Wo‘lﬂd most probably attribqi‘fe ithe effects of curvature to
changes in its own physical “eondition in nowise connected
with the geometrical chg%cter of its space.

What lesson may, v\ve’ earn by analogy for the three-
dimensioned space ,in\which we ourselves exist? To begin
with, we assume ,\tha,t all our space is perfectly same, or that
solid figures dd not change their shape in passing from one
position in ib €6 another. We base this postulate of sameness
upon thg}gésults of observation in that somewhat limited
portionof space of which we are cognizant.? Supposing our
obsetvations to be correct, it by no means follows that
beécause the portion of space of which we are cognizant is

! In this ease of two-dimensioned space assume it to be a plane. Cf. Clif-
ford's Lectures and Essays, vol. 1. p. 323.

* It may be held by some that the postulate of the sameness of cur space is
based upon the fact that no one has hitherto been sble to form any geometrical
conception of spacc-curvature. Apart from the fact that mankind babituslly
assurmes many things of which it can form no geometrical eoneeption (mathe-
maticians the circular points at infinity, theologians transubstantiation), I
razy remark that we cannot expect any being to form a geometrical concep-
tion of the curvature of his space till he views it from space of a higher di-
mension, that is, practically, never.

¢
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for practical purposes same, that therefore all space is same.!
Such an assumption is 8 mere dogmatic extension to the
unknown of a postulate, which may perhaps be true for the
space upon which we can experiment. To make such dog-
matic assertions with regard to the unknown is rather e¢har-
acteristic of the medigval theologian than of the modern
scientist. On the like basis with this postulate as to the ,
sameness of our space stands the further assumption that it
is homaloidal. When we assert that our space 18 everywhere
same, we suppose it of constant curvature (like the(gircle
as one- and the sphere as two-dimensioned space) whien we
suppose it homaloidal we assume that this euryatire is zero
(like the line as one- and the plane as tw&dimelésionid
space). This assumption appear in oyr geginetry unGer the
form that two parallel planes, %&%%paf‘a‘lf&ylfﬁgsuin the

same plane—that is, planes, or linepin/the same plane, which

however far produced will never, me'et——have a reql existence

in our space. This real existence, of which i ig clearly im-
possible for us to be cogni z}a:iit', we postulate as & result built
upon our experience of fthat happens in a limited portion_ of
space. We may postu‘la\.te that the portion of space of which
we are cognizaqﬁ\’%npraetically homaloidal, but we have

elearly no rightJto dogmatically extend this postulate to
' tible for that

all space. A\ constant curvature, Impercep

portion of Space upon which we can experiment, or even 4

curvajilre’ which may vary in an almost impereeptible man-

ner'jirq}ith the time, would seem %o satisfy all'that experi-
.efite has taught us to be true of the spacé I which we

dwell. ) 1 ok
But we may press our analogy 2 step further, and ass,
St ht very readily at-

since our hypothetical worm and fish mig

1 Yet it must be noted that, because & solid figure P
the same shape when it is moved about in
we are acquainted, it does not tollow that the fi
The changes of shape may be either jmperceptib!
which we are able to move the figure, or if they do take place we may o
them to “physical causes”-—to heat, light, or iagnetisny—which D&Y possibly
be mere names for variations in the eunrvatare of our sPace.
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tribute the effects of changes in the bending of their spaces
to changes in their own physical condition, whether we may
not in like fashion be treating merely as physical varistions
effects which are really due to changes in the eurvature of
our space; whether, in fact, some or all of those causes which
we term physical may not be due to the geometrical cog®
struction of our space. There are three kinds of variatigh
the curvature of our space which we ought to conmdm as
within the range of possibility. \

(i) Our space 1s perhaps really possessed of a ctrvature
varying {rom point to point, which we fail ?2;0 appreciate
because we are acquainted with only aJsmiall portion of
space, or because we disguise its small“variations under
changes iti*6tfRYNRET %85 on wh&?}h we do not connect
with our change of position. The m;nd that could recognize
this varying curvature might be\dssumed to know the ap-
solute position of a point. Fot'such a mind the postulate of
the relativity of position whnld cease to have a meaning. It
does not seem so hard 40 conceive such a state of mind as
the late Professor Clerk*Maxwell would have had us believe.
It would be one tapable of distinguishing those so-called
physical changes which are really geometrical or due to a
change of pesifion in space.

(ii) Oux gpace may be really same (of equal curvature},
but its'degree of curvature may change as a whole with the
time\In this way our geometry based on the sameness of
spaee ‘would still hold good for all parts of space, but the
Schange of curvature might produce in space a succession of
apparent physical changes.

(i) We may conceive our space to have everywhere a
nearly uniform curvature, but that slight variations of the
curvature may occur from point to point, and themselves
vary with the time. These variations of the curvature with
the time may produce effects which we not unnaturally
attribute to physical causes independent of the peometry
of our space. We might even go so far as to assign to
this variation of the curvature of space ““what really hap-
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pens in thai phenomenon which we term the motion of
matter.”” *

We have introduced these considerations as to the nature
of our space to bring home to the reader the character of the
postulates we make in the exact sciences. These postulates
are not, as too often assumed, necessary and universal truths;
they arc merely axioms based on our experience of a certain.
imited region. Just as in any branch of physical inquiry e
start by making experiments, and basing on oup.experi-
ments a set of axioms which form the foundation ef anh exact
science, s0 in geometry our axioms ave really, dithough less
obvicusly, the result of experience. On this ground geometry
has been properly termed at the commenpement of Chap-
ter I & physical science. The daﬁg&ﬁﬁfggﬁ%@;&%{l%rg‘{j%‘{lm'
ically that an axiom based on thefexperience of a Imited
region holds universally will now/bgrto some extent apparent
to the reader. It may lead us.lo-entirely overlook, or when
suggested at once reject, a possible explanation of pheno{al-
ena. The hypotheses that'space is not homaloidal, and again,
that its geometrical gharacter may change with the time,
may or may not ’b’e,\destined to play a great pa:rt in the
physics of the futire; yet we cannot refuse to consider them

1 This remariédble possibility seems first to have been sug_gested l_)_y P{Oiﬁ?g
Clifford in 5 ;ia;ier presented to the Cambridge P}:ﬂogophlcal SDclf!t}’ n .
(M athematichl Papers, p. 21), I may add the following v matks: The mft‘;
notable physical quantities which vary with position and time are h'?:' hi ,
and electro-magnetism. It is these that we ought peculiarly to considet wt i’;
seekitter for any physical changes, which may be due to changes 11 the cur;: &Jm‘

& Space. If we suppose the boundary of any arbitrary figurein Spacefir_o

orted by the variation of space-curvature, there would, by an.?lngyf rom f:gg
and two dimensions, be no change in the volume of the figure arsing Irom ith
distortion. Further, if we assume a2 an agiom that space resists cufnf? turge:lil&
2 resistance proportional to the change, we find that waves o ki ip::e sup-
placement” are precisely similar to those of the elastic medmlm :v_ e ity
pose to propagate light and heat, We also find that “‘space-twist lag Zilaimﬂar
exactly corresponding to magnetic induction, and satasf}’mg reth o D ote
o those which hold for the magnetic field. 1t is a question whether PAYZ -
might not find it simpler to assume that space i3 capable of 2 e fa aubtlt;,
and of 4 resistance to that variation, than to suppose the existence o

medium pervading an invariable homaloidal space.

£
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as possible explanations of physical phenomena, because they
may be opposed to the popular dogmatic belief in the uni-
versality of certain geometrical axioms—a belief which has
arisen from centuries of indiseriminating worship of the
genius of Euelid.
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CHAPTER V

Motion

§1. On the Various Kinds of Motion A

WaiLe the chapters on Space and Position considered the
sizes, the shapes, and the distances of things, the-present
chapter on Motion will treat of the changes in these ‘sizes,
shapes, and distances, which take place from titge to time.

The difference between the ordinary H@Pﬁﬁ%ﬁ%‘?ﬁed to
the word “change” in everyday life and the'meaning 1t has
in the exact sciences is perhaps betteritiistrated by the sub-
ject of this chapter than by any dther that we have yet
studied. We attained exactness in.dhe description of quantity
and position by substitutingetbe method of representing
them by straight lines drawn 'on paper for the method of
representing them by gahs of numbers; though this, at
first sight, might ea i]\riébem to be a step backwards rather
than g step forwa,rdss\ since it is more like a child’s sign of
Opening its armssbe’ show that its stick is so long, than a
process of seiedtific calculation.

It is, howe¥ér, by no means an easy thing te give an ac-
curate deseription of motion, even although it is itsc?lf' as
com‘?‘i:and familiar a conception as quantity or position.

Lef s take a simple case. Suppose that a man, on a rail-
Wa}’t’iourney, is sitting af one end of a compartment .Wlt-h
his face towards the engine; and that, while the train is
going along, he gets up and goes to the other end of -the
compartment, and sits down with his back to the engine.
For ordinary purposes this description is amply Si..lﬂi.(:lent,
but it is very far indeed from being an exact description of
the motion of the man during that time. In the first place,
the train was mooving, and it is necessary to state in what
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direction, and how fast it was going at every instant during
the interval considered. Next, we must deseribe thce motion
of the man relatively to the train; and, for this purpocse, we
must neglect the motion of the train and consider how the
man would have moved if the train had been at rest. First
of all, he changes his position from one corner of the com-
partment to the opposite corner; next, in doing this he turng
round; and, lastly, as he is walking along er rising up of
sitting down, the size and shape of many of his muscled. dre
altered. We should thus have to say, first, exactly hgw fast
and in what direction he was moving at every insfant, as
we had to do in the case of the train; then, how)quickly he
was turning round; and, lastly, what change3©f size or shape
were taqugwp(}gcaeullgr;:uﬁ Orl%ul%cles, and hQW fast they were
oceurring.

It may be urged that this would be a very troublesome
operation, and that nobody Wanﬁs A0 describe the motion
of the man so exactly. This ig-guite true; the case which
has been taken for illustra‘qipn’ 1s not one which 1t is nsees-
sary to describe exactly, bit we can easily find another case
which is very analogous %o this, and which it is moest impor-
tant to describe e{ﬂ@ﬂy The earth moves round the sun
once in every year; it is also rotating on its own axis once
every day; the ﬂo&tmg parts of it—the ocean and the air—
are constanKy undergomg changes of shape and state which
we can gbgerve and which it is of the utmost importance
that we, "hould be able to predict and calculate; even the
solidvmucleus of the earth is constantly subject to slight

"aha.nges in size and shape, which, however, are not large
enough to admit of accurate observation. Here, then, is a
problem whose complexity is quite as great as that of the
former, and whose solution is of pressing practical impor-
tance.

The method which is adopted for attacking this problem
of the accurate description of motion is to begin with the
simplest cases. By the simplest cases we mean those in
which certain complicating circumstances do not arise. We
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may first of all restriet ourselves to the study of the motions
of those hhadies in which there is no change of size or shape.
A body which preserves its size and shape unaltered during
the interval of time considered is called a rigid body. The
word “‘rigid” is here used in a technical sense belonging to
the science of dynamie, and does not mean, as in ordinary
language, a body which resists alteration of size and shapep,
but merely a body which, during a certain time, happeiis
ot to be altered in those respects. Then, as the first and
simplest case, we should study that motion of a rigid’ body
in which there is no turning round, and in which therefore
every line in the body keeps the same direction’(though of
course not the same position) throughouithe motion. We
state this by saying that every line ‘rigidly connei:ted"’
with the body remains parallel Yo WgéifauBbehr p.agotion is
called a motion of translation, or siRiply a translation; and so
the first and simplest case we have to study is the tranlsla-
tion of rigid bodies. After that we must proceed to consider
their turning round, or relgtion; and then we have to de-
scribe the changes of size o shape which bodies may under-
80, these last changes being called sirains. The study of
motion therefore &éqtires the further study of translations,
of rotations, andhof strains, and further, the art of combin-
ing these togéther. When we have studied all this we shei,ll
be able tardescribe motions exactly; and then, but not till
then, will)it be possible to state the exact circumstances
undeﬁ"&ﬂich motions of a given kind oceur. Tthe exact cir-
cum§tances under which motions of a given kind occur We
oW s low of nature.

§2. Translation and the Curve of Pesitions

Let us talk, to begin with, of the transtation of & rigid
body.
Suppose a table to be taken from the top to ,the bo}ﬁto];n Oi
a house in such & manner that the surface of it 1s alwa,yst 511:{3
horizontal, and that its length is made always to pow
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north and south; it may be taken down a staircase of any
form, but it is not to be turned round or tilted up. The
table will then underge a translation. If we now consider
a particular corner of the table, or the end of one of its logs,
or any other point, this point will have described a certain
curve in & certain manner; that is to say, at every point of
this curve it will have been going at a certain definite raté
Now the important property of a motion of translagitn,
which makes it more easy to deal with than any othgrymo-
tion, is that for all peints of the body this eurve is dhe ‘same
in size and shape and mode of description. Thafythis is so
in the case of the table is at once seen from thefact that the
table is never turned round nor tilted up duzihg the motion,
~so that the different pelnss.ief it must.’&\t’any instant be
moving in the same direction and at the'same rate. In order
therefore to describe this motion of(the table it will be suf-
ficient to describe the motion of dpy point of it, say the end
of one of its legs. And so, in general, the problem of describ-
ing the motion of translaﬁidri’of any rigid body is reduced
to the problem of desqui{)ing the motion of a point along a
curve. D
Now thisis a vel;y\%uch easier task than our eriginal prob-
lem of deseribing\the motion of the earth or the motion of
the man in thetriin; but we shall see that, by properly study-
ing this, ltvhll be easy to build up out of it other more
compli'qa\@ed cases. Still, even in this form our problem 13
not guite simple enough to be directly attacked. What we
bayeito do, it must be remembered, is to state exactly where
@ gertain point was, and how fast it was going at every in-
stant of time during a certain interval. This would require
us first to describe exactly the shape of the curve along
which the point moved ; next, to say now far it had travelled
along the curve from the beginning up to any given instant;
and lastly, how fast it was going at that instant. To deal
with this problem we must first take the very simplest case
of it, that, namely, in which the point moves along a straight
“line, and leave for the present out of account any descrip~
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tion of the rate of motion of the point; so that we have only
to say where the point was on a certain straight line at every
instant of time within a given interval.

But we have already considered what is the best way of
describing the position of a peint upon a straight line. It is
described by means of the step which is required to carry it
to that position from a certain standard place, viz. a stép'
from that place so far to the right or to the left. To specily
the length of the step, if we are to describe it exaotly; we
must not make use of any words or numbers, but Inust draw
a line which will represent the length corresponding to every
instant of time within a certain interval,sb that we may
always be able to answer the question, Wheére was the point _‘
at this particular instant? But a@u@m,b%grg r, ta be
exactly answered, must first be.exactly asked] and to do
this it is necessary that the inst4nt of time about which the
question is asked should be ageurately specified. _

Now time, like length,.js%a continuous quantity which
cannot in general be ded¢ribed by words or numbers, but
can be by the drawing of a line which shall represent 1t to &
certain scale. Suppése, then, that the interval of time dunpg
which the moti(gx of a point has to be described is the in-
terval from twfelve o’clock to one o’clock. We must mark on
a straight Jige a point to represent twelve o’clogk and an-
other pofdh to represent one o’clock; then every instant be-
tweenl{welve o’clock and one o’clock will be represented by
a point which divides the distance between these two

-~ mitked points in the same ratio in which that 1f1stant
divides the interval between twelve o’clock and one o’clock.
Then for every one of these points it 18 necessary to assign a
certain length, representing (to some definite scfa,le) thﬁ' dlSc'i'
tance which the point has travelled up to that instant; an
the question arises, In what way shall we mark down these
lengthg? ] .

Let us first of all observe the difficulty of answering this
question. If we could be content with an approximate solu-
tion instead of an exact one, we might make & table and put
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down in inches and decimals of an inch the distances trav-
elled, making an entry for every minute, or even perhaps
for every second during the hour. Such tables are in fact
constructed and published in the “‘Nautical Almansc™ for
the positions of the moon and of the planets. The iabour of
making this table will evidently depend upon its degree of.
minuteness; it will of course take sixty times as long to mgke
a table showing the position of the point at every second.as
to make one showing the position at every minute, Dedause
there will be sixty times as many values to calctlafe. But
the problem of describing exactly the motion¢of’the point
requires us to make a table showing the positian of the point
at every instant; that is, a table in which'are entered an
infinite HUHIEF BEYENIES B hese values Bioreover are to be
shown, not in inches and decimals ofan inch, but by lengths
drawn upon paper. Yet we sha}l’ﬁ'nd that this pictorial
mode of constructing the tablells in most cases very much
easier than the other. We have only to decide where we
shall put the straight lipe:s"which represent the distances
that the point has trayélled at different instants.
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(Let ab (Fig. 113) be the length which represents the interval
of/time from twelve o’clock to one o’clock, and let m be the
point representing any intermediate instant. Then if we draw
at m a line perpendicular to ab whose length shall represent
(to any scale that we may choose) the distance that the
point has up to this instant travelled, then p, the extremity
of this line, will correspond to an entry in our table, But if
such lines be drawn perpendicular to ab from every point in
it, all the points p, which are the several extremities of these
lines, will lie upon some curve; and this curve will represent
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an infivite number of entries in our table. For, when once
the curve is drawn, if a question is asked: What was the
position of the point at any instant between twelve o’clock
and one o'clock? (this instant being specified in the right
way by marking a point between a and b which divides that
line in. the same ratio as the given instant divides the hour),
then the snswer to this question is obtained simply by draw-
ing a line through the marked point perpendicularto " ad,
until it meets the curve; and the length of that-line’ will
represent, to the scale previously agreed upon, the"distance
travelled by the point. 7.\

Such a curve is called the curve of positions for a given
motion of the point; and we arrive af\this result, that the
proper way of specifying exactlyibransiationoalong a
straight line is to draw the curve 0{ Ppositions,

We have now learned to specify; by means of a curve, the
positions of a body which hasimotion of translation along a
straight line; and we have-not only represented an infinite
number of positions instead of a finite number, which is all
2 numerical table would admit, but have also representefl
each position wi,‘r&ix\dbsolute exactness instead of approxi-
mately, It is ifaportant to notice that in this and in all
similar cases(he exactuness is ideal and not practical; it s
exactness of‘donception and not of actual measurement. For
though f8:is not possible to measure a given length and to
staté bbbt measure any more acourately by drawing & line
than it is by writing it down in inches and decimals of an

citieh, yet the representation by means of a line enables us

Y

) to reason upon it with an exactness which would be Imposst-

ble if we were restricted to numerical measurexment.

§83. Uniform Motion

Hitherto we have supposed our peint to be moving along
a straight line, but were it to move along a curve the COJIELJ.(;]-
struction given for the curve of positions would still ho
good, only the distance traversed at any instant must DOW
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be measured from some standard position along ihe curve.
Hence any motion of a point, or any motion of translation
whatever, can be specified by a properly drawn curve of
positions, and the problem of comparing and classifying dif-
ferent motions is therefore reduced to the problem of com-
paring and classifying curves. Here again it is advisable and,
even necessary to begin with a simple case. Let us take the
case of uniform motion, in which the body passes over equal
distances in equal times; and then, as we may easily see,
the curve of positions is a straight line. Unifonmimotion
may also be described as that in which a body @ways goes
at the same rate, and not quicker at one tini€ 2hd siower ab
another. It is obvious that in this case angstwo equal dis-
tances wenlditequiibeaguaktimes for tra<r§}sing them, so that
the two deseriptions of uniform motion ‘are equivalent.

It was shown by Archimedes (the proof is an easy one,
depending upon the definitioncef*the fourth proportional)
that whenever equal distancésiare traversed in equal times,
different distances will he™traversed in times proportional
to them. Assuming thi§ ‘proposition, it becomes clear thab
the curve of positigns\must be a straight line, for a straight
line is the only cuxve which has the property that the height

of every poing Qf.it is proportional to its horizontal distance
from a fixed &traight line.

We may‘;s}so see in the following manner the connection
betwegktﬁe straight line and uniform motion.
Suppose we walk up a hill so as always to get over a hori-

) zqm?al distance of four miles in an hour. The rate at which
we go up will clearly depend on the steepness of the hill; and
if the hill is a plane, 1.e. is of the same steepness all the way
up, then our rate of ascent will be the same at every instant,
or our upward motion will be uniform. If the hill be four
miles long and one mile high, then, since the four miles of
horizontal distance will be traversed in an hour, the one mile
of vertical distance will also be traversed in an hour, and we
shall be gaining height at the uniform rate of one mile an
hour. If the hill were two miles high, or, as we say twice a8
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steep, ther: we should have been gaining height at the rate
of two miles an hour. But now if we suppose a hill of varying
steepness, so that the outline of it seen from one side is a
curve, then it is clear that the rate at which we go up will
depend vpon the part of the hill where we are, assuming
that the rate at which we go forward horisontally remains
always the same, This “elevation” of the hill may be taken
as the curve of positions for our vertical motion; for the
horizontal distance that we have gone over, being @lways
Proportional to the time, may be taken to represent the time,
and then the curve will have been constructed @csording to
our rule, viz. 2 horizontal distance will have been taken pro-
portional to the time elapsed, and fromthe’end of this line

& perpendicular will have been rajsed ggdggﬁgpﬁ }he 1_1i?light
which we have risen in that time. Uniform motion Hen'bas
for its curve of positions a straight.Jine, and the rate of the
motion depends on the steepuess of the line. Variable mo-
tion, on the other hand, ha&™a curved line for its curve of
positions, and the rate of motion depends upon its varying
steepness, ~ _

In the case of uni:form mofion it is very e&S}’_mde'Bd to
understand whaxﬁéé mean by the rate of the motion. Thus,
If & man walks uniformly six miles an hour, we know th_at'
he walks s gdile in ten minutes, and the tenth part of a mile
in one minyte, and so on in proportion. It may not, how-
ever, b€ possible to specify this rate by means o_f numbers;
that§8%o say, the man may not walk any definite number
of-iiles in the hour, and the exact distance that he Walkg

By not be capable of representation in terms of miles an
fractions of g mile. In that case we shall have to represent
the velocity or rate at which the man Walk:s in mauch th.e
Same way as we have represented other coqmnueus quanti-
ties. We must draw to scale upon paper & line repx:esentmg
the length that he has walked in an hour, or a minute, for
any other interval of time that we decide to select; t'hus, lfl‘
example, a uniform rate of walking might be specified a.i
marking points corresponding to particular hours upon
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Ordnance map. The rate of motion, or velocity, is then a con-
tinuous quantity which can he exactly specified, as we
specify other continuous quantities, but which can he only
approximately deseribed by means of numbers.

§4. Variable Motion ~

Let us now suppose that the motion is not uniforny afxd
inquire what is meant in that case by the rate at wmch 8
body moves.

A ftrain, for example, starts from a statlon nd in the
course of a few minutes gets up to a speed” of 30 miles an
hour. It began by being at rest, and it entls by having this
large velocltg W, hgt has halppened tg At In the meantine?
We cani0aERsen dgy na rou,g}l sort of way what is
meant by saying that at a cerpain time between the two
moments the train must havelbeen going at 15 miles an
bour, or at any other mtermedlate rate; but let us endeavour
to make this conception #dittle more exact. Suppose, then,
that a second train, w@ch is indefinitely long, is moving in
the same direction t a uniform rate of 15 miles an hour on a
pair of rails paraléi to that on which {he firgt {rain moves;
thus, when Qup first train is at rest the second one will appear
o move pas% it at the rate of 15 miles an hour. When the
first train starts an observer scated in it will see the second
train @lhg apparently rather more slowly than before, but
it ywll still seem to be moving forwards. As the first train
gets up its speed, this apparent forward motion wiil gradu-
ally decrease until the second train will appear to be going
so slowly that conversation may be held between the two;
this will take place when the rate of the first train has
amounted to something nearly but not quite equal to 15
miles an hour, which we supposed to be the constant rate
of the second train, But as the rate of the first train continues
to increase theve will come 3 certain instant at which the
second train will appear to stop gaining upon the first and
to begin to lose. At that particular instant it will be neither
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gaining nor losing, but will be going at the same rate; at
that particular instant, therefore, we must say that the first
train is going at the rate of 15 miles an hour. And it is at
that instant only, for the equality of the rates does not last
for any fraction of a second, however small; the very instant
that the second train appears to stop gaining it also appears
to begin losing. The two trains then run exactly togethef ™
for no distance at all, not even for the smallest fraction,of
an inch, and yet we have to say that at one particularinstant
our first train is going at the rate of 15 miles an‘hour, al-
though it does not continue to go at that rape during the
smallest portion of time. There is no way, of\méasuring this
instantancous velocity except that whichvhas just been
described of comparing the motion with-a uniform motion
having that particular velocity. W\f’ygdbmmbrary‘org‘j“
Upon this we have to make the very important remnark
that the rate at which a body isgoing is a property as purely
instantanecus as is the precise position which it has at that
instant, Thus, if a stone belet fall to the ground, at the mo-
ment that it hits the ground it is going at a certain d('eﬁmte
tate; and yet at,any)previous moment it was not gomg SO
fast, since it d ot move at that rate for the smal;est
fraction of a,gedond. This consideration is somewhat diffi-
cult to graspythoroughly, and in fact it has led many people
to reject./gltogether the hypothesis of continuity; bub still
we may-be helped somewhat in understanding it by means
of ofur study of the curve of positions, wherein we Saw that
0% uniform motion corresponds a straight line and ’?hat the
Yate of the motion depends on the steepness of the line. ;
Let us now suppose a motion in which a body goes atha
very slow but uniform rate for the first second, during the
next second uniformly but somewhat faster, faster igam
during the third second, and so on. T. he. curve of positions
will then be represented by a series of straight lines be;;g;llﬂg
steeper and steeper and forming part of & polygon- arved
sufficient, distance off this polygon will look like & ¢4¥%
line; and if, instead of taking intervals of @ second QUTIng
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which the rates of motion are severally considered usiform,
we had taken intervals of a tenth of a second, then the
polygon would Jock like a curved line without our going so
far away as before. For the shorter the lengths of the sides
of our polygon, the more will it look curved, and if the in-
tervals of time are reduced to one-tenth the sides will be
only one-tenth as long. The rate at which the body Uﬁ.der\
consideration is moving when it is in the position to which
any point of the polygon corresponds, is obtained bys.\pro—
longing that side of the polygon which passes thréigh the
point; the rate will then depend on the steepness/of this line,
since, where the line is a side of the polygon/dt represents
the uniform motion which the body hagiduring a certain
interval. When the polygon looks like a ditrve the sides are
very shorty 4R @b REEBeing prol@;@éd both ways, will
look like a tangent to the curve. WO

Now in considering the general ‘edse of varying motion we
should have, instead of the abeve polygon which locks like
a eurve, an actual curve; the Wifference between them being
that, if we look at the gurve-like polygon with a sufficiently
strong microscope, wé shall be able to see its angles, but
however poweﬁuks{niicroscope we may apply to the curve
it will always Ibok"like a curve. But there is this property
in eommon, jl:iat if we draw a tangent to the curve at any
point, thgni..since the steepness of this tangent will he ex-
actly thesame as the steepness of the curve at that particular
pointyib will give the rate for the motion represented by the
curve, just as before the steepness of the prolonged small
) o'ﬁfﬁe of the polygon gave the rate for the motion represented
by the polygon. That is to say, the instantaneous velocity of
a body in any position may be learnt from its curve of posi-
tions by drawing a tangent to this curve at the point cor-
responding to the position; for the steepness of this tangent
will give us the velocity or rate which we want, since the
tangent ifself corresponds to a uniform motion of the same
velocity as that belonging {o the given varying motion at
the particular instant. From this means of representing the
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rate we can see how it is that the instantaneous velocity of a
body generally belongs to it only at an instant and not for
any length of time however short; for the steepness of the
crve is continually changing as we go from one part of it
to another, and the curve is not straight for any portion of
its length however small.

The problem of determining the instantaneous velocity
in g given position is therefore reduced to the probleniof
drawing a tangent to a given curve. We have a sufficiently
clear general notion of what is meant by each of these things,
but the notion which is sufficient for purposes of ordinary
diseourse is not sufficient for the purposes of teasoning, and
it must therefore be made exact. Just. a8 we had to make
our notion of the ratio of two quantitieg'exact by means of
a defivition of the fourth proportiogaki omof the-gquality of
two ratios which were expressgd in terms of numbers, so
here we shall have to make ouridea of a velocity exact by
expresging it in terms of mgasiirable quantities which do net
change. N i

We have no means of Measuring the instantaneous velocity
of a moving body;{the only thing that we can measure 18
the space which it traverses in a given interval .Of time, In
the case in which'a body is moving uniformly, its instantane-
ous velocityy being always the same, 18 complet?ly Speclﬁ_e‘i
a5 soon agwe know how far the body has gone 1n & dt?ﬁmte
time, Axid, as we have already observed, the result is the
sami@wwhatever this interval of time may be; the rate of four
_uiles an hour is the same as eight miles in two hours, or two
¢\iles in half an hour, or one mile in a qua.urtef of an h‘:ﬁr'
" But if a body be moving with a velocity which is continually
changing, the knowledge of how far it has gone in a given
interval of time tells us nothing about the mantane(;'us
velocity for any position during that interval. To say, 10X

instance, that a man has travelled a ilfsmmi of f;l]:zu?f;z
duri . information L
Ing an hour, does not give us any moment during

actual rate at which he was going at apy mo t 5 uni-
the hour, unless we know that he has been gong &
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form rate. Still we are accustomed to say that in such a case
he must have been going on an average at the rate of four
miles an hour; and, as we shall find it useful to speak of this
rate as an “average velocity,” its general definition may be
given as follows:—

If a body has gone over a certain distance in a ceriain
time its mean or average velocity is that with which, ift
travelled uniformly, it would get over the same dlstanue in
the same time.

This mean velocity is very simply represented by‘the help
of the curve of positions. Let a and b (Iig. 114) be two points

L S\
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on the eurve of positions;then the mean velocity between the
position represented by'g and that represented by b is given
by the steepness of~the straight line a b. This, moreover,
enables us to miake some progress towards a method of
calculating instantaneous velocity, for we showed that the
problem of fnndmg the instantaneous velocity of a body is,
in the a.bo\(e method of representation, the problem of draw-
mg a‘tgngent to a curve. Now the mean velocity of a body
is de‘ﬁ}led in terms of quantities which we are already able
| oy measure, for it requires the measurement of an interval
{_'of time and of the distance traversed during that interval;
and further the chord of a curve, i.¢. the line joining one
point of it to another, is a line which we are able to draw. If
then we can find some means of passing from the chord of a
curve to the tangent, the representation we have adopted

will help us to pass from the mean to the instantaneous
velocity.
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§5. On the Tangent to a Curve

Now let us suppose the chord a b (Fig. 115) joining the
points on the curve to turn round the point @, which remains
fixed; then & will fravel along the curve towards a ;and if we

a [

Fra. 115 g

suppose b not to stop in this motion until it has got beyond a
to a point such as &’ on the other side, $hévchord will have
turned round into the position e b’. Now, looking at the
eurve which is drawn in the ﬁgm'eu\i%"see that the tangent
to the curve at ¢ obviously lies bg‘ﬁvw'illbﬁ%”éﬁ‘&’w @lﬂ'ﬁms.ﬁ
@b turn round @ s0 as to mové iitto the position a b’ it will
at some instant have to pass over the position of the tangent.
At the instant when it padsés over this position where is the
point b? We can at onee'see from the figure that it cannot
be anywhere else thap at @, and yet we cannot atta,ch. any
definite meaning 46 line described as joining two coincident
points. If we co\ﬁﬂ, the determination of the tangent would
be very easy,$or in order to draw the tangent to the curve ab
@, we should merely say, Take any other point b on the
curve; join a b by a straight line; then make b travel along
the tirve towards a, and the position of the line a b when b
hag'got to  is that of the tangent at a. Here however arises

(fhe difficulty which we have already pointed out, namely,

o/

< that we cannot form any distinct conception of & line joining

two coincident points; two separate points are necessary 1o
order to fix g straight line. But it is clear tha_t, although' 1?} is
1ot yet satisfactory, there is still something in the definition
that is useful and correct; for if we malke the chord turn from;
the position a b to the position of the tangent at @, the poi?flle

does during this motion move along the curve up to
point a,
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This difficulty was first cleared up and its explanation
made a matter of common sense by Newton. The nature of
his explanation is as follows:—Lef us for simplicity take the
curve to be a circle. If a straight stick be taken and beunt a0
as to become part of a circle, the size of this circle will depend
upon the amount of bending. The stick may be bent com-
pletely round until the ends meet, and then if will make 2
very small eircle; or it may be bent very slightly indeed, and
then it will become part of a very large circle. Now, gon-
versely, suppose that we begin with a small circle, and, Foid-
ing it fast at one point, make it get larger and lar ger, ko tiat
the piece we have hold of gets less and less bent then, as
the circle becomes extremely large, any small\portion of it wiil
more and INOTe I proximate to a siraight line. Jience
a circle ﬂé}‘érgésse%a aﬁ P ér{‘?}, tha,t tﬁe more 1t is magni-
fied the straighter it becomes; this property likewise helongs
to all the curves which we requirgaot'o consider. It is sometimes
expressed by saying that the curye is straight in its elements,
or in its smallest parts; bufy ‘the statement must be under-
stood to mean only this, that the smaller the piece of a curve
is taken the straighter/i'will look when magnified to a given
length. N\

Now let us apply this to the problem of determining the
position of a tavgént. Let us suppose the tangent a ¢ of a circle
to be alrea.gly\drawn, and that a certain convenient length is

a { T
N __——-—-—-—__._~__N_‘ 4
N b

B

Fi1c. 116

marked off upon it (Fig. 116); from the end of this T let a
perpendicular be drawn to meet the circle in B, and let @ be
joined to ® by a straight line. We have now to consider the
motion of the point B along the circle as the chord a B 13 turn-
ing round g towards the position & T; and the difficulty in
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our wav is clearly that figures like g BT get small, as for
example @ b1, and continue 1o decreage until they cease to
be large enough to be definitely observed. Newton gets over
this ditliculty by supposing that the figure is always magni-
fed to a definite size; so that instead of considering the
smalier figure @ bi we magniy it throughout until a? is
equal to the original length aT. But the portion e b of the
cirele with which we are now concerned is less than the
former portion a B; consequently when it is magnified) to
the same length (or nearly so) it must appear straighter.
That is o say, in the new figure ¢ b’ 7, which is@¥h magni-
fied, the point b’ will be nearer to the point 4 $han B in the
old one a B T; consequently, also, as b moves along to e the
chord o b will get nearer to the tangenpt ¥, or, what is the
same thing, the angle tad will gammu%bﬂp;&?s & result
is clear enough, because, a8 we. previously Suppogea, the
chord a b is always turning rognd towards the position a &,
But now the importantything is that, by taking b near
enough to a, we can make the curve in the magnified ﬁ:gure
as gtraight as we plgzise;'that is to say, we can make b’ ap-

o r

-_— ______‘____‘_‘__-_-__-_
D 4

\. \. Fig. 117
proach 8 hear as we like to 1. If we were to measure off fron;
T péxpendicularly to a T any length, however s-mall, Sa{T
(Fig."117), then we can always draw a cixcle which shall have
t and d; and,
) “Turther, if we like to draw aline ¢ d making 8 Very swna a’;gle
with & T, then it will still be possible to make b go so close l(;ei
that in the ma_gniﬁed ﬁgure the angle Yat Sh&u be sma
than the angle d @ T which we have drawn.
Now mark what this process, which has been called New-

ton’s microscope, really means. While the figure which we

, Hy
wish t i i maller and smaller, and fina
o study is getting 8 o be ! mtinually mag-

disappears altogether, we suppose i ?
nified, so as to retain a.convenient size. We have one point
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moving along a curve up towards another point, and we
want to consider what happens to the line joining them when
the two points approach indefinitely near to one another,
The result at which we have arrived by means of our miero-
scope is that, by taking the points near enough together, the
line may be made to approach as near as we please to the
tangent to the curve at the point a. This, therefore, gived g
a definition of the tangent to a curve in terms ooly of xises-
urable quantities. If at a certain point o of a curve there is
a line a ¢ possessing the property that by taking b gear ~encugh
to a on the curve the line a & can be brought &3 near as we
like to a ¢ (that is, the angle b a { made less tham any assigned
angle, however small), then e ¢ is caﬂed the tangent to the
curve wt stheapbhytra.cObigerve that allé e things supposed
to be done in this definition are thm;% which we know can
be done. A very small angle can be assigned; then, this
angle being drawn, a position-gf the point b can be found
which is such that ¢ b makesWith a ¢ an angle smaller than
this. A supposition is here’ mide in terms of quantities which
we already know and €an measure. We only suppose in ad-
dition that, howevef #mall the assigned angle may be, the
point b can a,lwa‘yé\ e found; and if this is possible, then in
the case in whlch the assigned angle is extremely small,
the line a b D@ ¢ (for they now coincide) is called a tangent.
It is worth while to observe the likeness between this
deﬁmtion and the one that we previously discussed of the
fourth proportional or of the equality of ratio. In that defi-
) .mﬁon we supposed that, a certain fraction being assigned,
if the first ratio were greater than this fraction, so also was
the second ratio, and if less, less; and the question whether
these ratios were greater or less is one that can be settled
by measurement and comparison. We then made the further
supposition that whatever fraction were assigned the same
result would hold good; and we said that in that case the
ratios were equal. Now in both of these definitions, applying
respectively to tangents and to ratios, the difficulty is thab
we cause a particular supposition to be extended so as to be
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general; for we assurne that a statement which can be very
casily tested and found true in any one case is true in an in-
finite number of cases in which it has not been tested. But
although the test cannot be applied individually to all these
cascs in a practical way, yet, since it is true in any individual
case, we know on rational grounds that it must be satisfied
in general; and therefore, justified by this knowledge, wey
are able to reason generally about the equality of ratios and
about the tangents to curves. O D
Let us now translate the definition at which we have thus
arrived from the language of curves and tangents Into the
language of instantaneous and mean velocitigs“The steep-
ness of the chord of the curve of positions indicates the mean
velocity, while the steepness of thmul}]t lilég‘ t_}(}? _Q;Ul"f'e
at any point indicates the instantaneous veliocn?}y that
point. The process of making the yeint b move nearer and
nearer to the point a corresponds 0 taking for eonsideration
s smaller and smaller interyal\of time after that moment at
which the instantaneous velocity is wanted. )
Suppose, then, the vélecity of a body, viz. a railway train,
to be varying, and that we want to find what its val}le is at
a given instant, We might get a very rough approximation
to it, or in somie cases no approximation at all, by taking
the mean velabity during the hour which follows that instant.
We shoyl®set a closer approximation by taking the mean
velocify during the minute succeeding that instant, because
the justantaneous velocity would have less time to change.
_Astill closer approximation would be obtained were we 10
{ take the mean velocity during the succeeding second. In all
motions we should have to consider that we could malfe the
approximation as close as we like by taking a sufficiently
small interval, That is to say, if we choose to name any very
small velocity, such as one with which a body going um-
formly would move only an ineh in a century, then, by taknl:g
the [ time] interval small enough, it will be possible to' mabe
the mean velocity differ from the instantaneous velomtyf %«'
less than this amount. Thus, finally, W shall have the Iol-
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lowing definition of instantaneous velocity: If there is a cer-
tain velocity to which the mean velocity during the interval
succeeding a given instant can be made to approach as near
as we like by taking the interval small enough, then that
velocity is called the instantaneous velocity of the body at
the given instant. ~

In this way then we have reduced the problem of fiuding
the velocity of a moving body at any instant to the problem
of drawing a tangent to its curve of positions afthe corre-
sponding point; and what we have already pl;eir,ed arnounts
to saying that, if the position of the body b&given in terms
of the time by means of a curve, thensthe velocity of the
body will be given in terms of the tibte by means of the
ta.ngent toting arkbrary . org.in o ,\\

Now there are many curves towhich we can draw tangents
by simple geometrical methods{as; for exarmple, to the ellipse
and the parabola; so that, &hénever the curve of positions
of a body happens to be ene of these, we are able to find by
geometrical construction”the velocity of the body at any
instant. Thus in the‘case of a falling body the curve of posi-
tions is a parahol4, and we might find by the known proper-
ties of the tap@e\nt to a parabola that the velocity in this
case is propertional to the time, But in the great majority of
cases theroblem of drawing a tangent to the curve of posi-
tions ig(just as difficult as the original problem of deter-
:lmgil)g ‘the velocity of a moving body, and in fact we do in

. many cases solve the former by means of the latter.
e

N

\ W

§6. On the Determination of Variable Velocity

What is actually wanted in every case will be apparent
from the consideration of the problem we have just men-
tioned—that of a body falling down straight. We note, from
the experience of Galilei, that the whole distance which the
body has fallen from rest at any instant is proportional to
the square of the time; in fact, to obtain this distance in feet

1 The method is due to Roberval (1602-1675).
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we must multiply the number of seconds by itself and the
result by a number a little greater than sixteen. Thus, for
instance, in five seconds the body will have fallen rather
mare than twenty-five times sixteen feet, or 400 feet. Now
what we want is some direet process of proving that when
the distance traversed is proportional to the square of the
time the velocity is always proportional to the time. In the(
present case we can find the velocity at the end of a given
number of seconds by multiplying that number by tiirty-
two feet; thus af the end of five seconds the velocity of the
body will be 160 feet per second.! Now as a matjenof fact a

! The following muy be taken as a proof. Let a be the.tﬁ}taﬁce from rest
moved aver by the body in ¢ seconds, b that moved over byit'in{ + £ seconds,
so that ¥ seconds is the interval we take to find out, the'miean velocity. Now
by our rule just quoted, since & feet are pAssed- {Pﬁ%ﬁﬁdﬂ'g‘im‘@

a = 168, AV
and gimilarly b= 16(t + )t = 16(AH 20 + ¢7).
Hence we have b — g = 1607 -+ 20’ 4 {8~ 168
= 162 + £ N
= 160(2 + £HS

giving the distance moved over i the interval #'. But the mean velocity during

this interval is obtained by ghv)aing the distance moved over by the time taken
to traverse it; hence the x’]@.}i'velocity in our case for the interval of ¥ seconds

immediately succeeding\the £ seconds

N

y \’.. = ¥
NOT _wern
\ - t!

NS = 16(2¢ -+ 1)
a \Y4 = 32t - 16",

Now if we look at this result, whick we have obtained for the mean velocity,
we sea that there are two terms in it, The first, viz. 324 is quite mdepgndent
of the interval # which we have taken; the second, viz. 16, depends ({uectiy
on it, and will therefare change when we change the interval. Now the distance
per second represented by 16t feet can be made as small as we like by taldng

¢ stall enough; so that the mean velocity during the interval ¢ seconds
succeeding the given instant can be made to a.pp;oach 32! feet per aecopd
a8 near as we lite by taking ¥ small enough. Recl}mlllg to our deﬁmiilou of in-
stantaneous velocity, it is now evident that the instantaneous velocity of onr

falling body at the end of ¢ seconds is 32 feet per second.

N\
* ‘:
S
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process (of which there is a simple example in the footnote)
has been worked out, by which from any algebraical rule
telling us how to calculate the distance traversed in terms
of the time we can find another algebraical rule which will
“tell us how to calculate the velocity in terms of the time.
One case of the process is this: If the distance traversed is
at any instant a¢ times the nth power of the time, then the,
velocity at any instant will be na times the (n—1)th power
of the time. It is by means of this process of alteringOné
algebraical rule so as to get another from it that both(of* the
problems which we have shown to be eqmvalent tolone an-
other are solved in practice. )

There is et a,nother problem of very great: meorta,nce in
the study of hareral PR8ISR, which can'be made to de-
pend on these two. When a point moves along a straight
line the distance of it from some ﬁxgad"})oint in the hne s a
quantity which varies from time totime. The rate of change
of this distance is the same thing'gs the velocity of the mov-
ing point; and the rate of changé of any continuous quantity
can only be properly repreSented by means of the velocity
of a point.

Thus, for msfance,\‘the height of the tide at a given port
will vary from time to {ime during the day, and it may be
indicated by as mark which goes up and down on a stick.
The rate at whieh the height of the tide varies will obviously
be the 9ame"t&mg as the velocity with which this mark goes
up andgdown, Again the pressure of the atmosphere is indi-
cated by means of the height of a mercury barometer. The

aﬁ;e Jat which this pressure changes is obvicusly the same
thlng as the velocity with which the surface of the mercury
moves up and down. Now whenever we want to describe the
changes which take place in any quantity in terms of the
time, we may indeed roughly and approximately do so by
means of a tablc. But this is also the most troublesome way;
the proper way of describing them is by drawing a curve in
which the abseissa, or horizontal distance, at any point repre-
sents the time, while the height of the curve at that point
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represents the value of the quantity at that time (see p. 167).
Whenever this is done we practically suppose the variation
of the quantity to be represented by the motion of the point
on o eurve. The quantity can only be adequately represented
by marking off a length proportional to it on a line; so that
if the quantity varies then the length marked off will vary,
and consequently the end of this length will move along the
curve. The rate at which the quantity varies is the raté ab
which this point moves; and when the values of the ,qﬁaiitity
for different times are represented by the perpendieular dis-
tances of points on a curve from the line which represents
the time, its rate of variation is determined by the tangent
to that curve. \%
AN
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§7. On the Method of Fluzions

Hence we have three problems which are practically the
same. First, to find the veloeity of a moving point when
we know where it is at e}iferjf instant; secondly, to draw a
tangent o a curve aﬁaﬁy point; thirdly, to find the rate of
change of a quantifyrsvhen we know how great it is at every
instant, And t iéoiution of them all depends upon that
process by which, when we take the algebraical rule for
finding the QUantity in terms of the time, we deduce from
it anotheg rile for finding its rate of change in terms of the
time., '\

Th%"par\tieular process of deriving one algebraical rule
frai another was first investigated by Newton. He was ac-

~eustomed to describe a varying quantity as a fuent, and its
Tate of change he called the fluzion of the quantity. On ac-
count of these names, the entire method of solving these
problems by means of the process of deriving one algebraical
rule from another was termed the Method of Fluxions.

In general the rate of variation of a quantity will itself
change from time to time; but if we consider only an interval
very small as compared with that required for a considerable
variation of the quantity, we may legitimately suppose that
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it has not altered much during that interval, This is prae-
tically equivalent to supposing that the law of change has
been uniformly true during that interval, and that the rate
of change does not differ very much from its mean value.
Now the mean rate of change of a quantity during an interval
of time is just the difference between the values of the quan-
tity at the beginning and at the end divided by the intervala
If any quantity increased by one inch in a second, then, al
though it may not have been inereasing uniformly, or{evén
been inereasing at all during the whole of that sec.ona, yet
during the second its mean rate of increase was oie'inch per
second. Now if the rate of increase only changeé’slowly we
masay, as an approximation, fairly suppose it4o6 be constant
during the" 5o SR BHRIESre to be egual to the mean
rate; and, as we know, the smaller the terval of time is, the
less is the error arising from this sepposition. This is, as a
matter of fact, the way in which ¢hat process is established
by means of which a rule for gateulating position is altered
into a rule for caleulating vel'oéity. The difference between
the distances of the moving ‘point from some fixed point on
the line at two different.times is divided by the interval be-
tween the times, ant “£his gives the mean rate of change
during that inter¥al. If we find that, by making the interval
smaller and spd@llér, this mean rate of change gets nearer
and nearer 0.4 certain value, then we conclude that this
value ig.3hi8 actual rate of change when we suppose the in-
terval to%ﬁrmk up into an instant, or that it is, as we call it,
the ingtantaneous rate of change.

¢ Beecause two differences are used in the argument which
edtablishes the process for changing the one rule into the
other, this process was called, first in other countries and
then also in England, the Differential Caleulus. The name is
an unfortunate one, because the rate of change which is
therein calculated has nothing to do with differences, the
only connection with differences being that they are men-
tioned in the argument which is used to establish the process.
However this may be, the object of the differential calculus
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or of the method of fluxions (whichever name we choose to
give it) is to find a rule for calculating the rate of change of
a guantity when we have a rule for calculating the quantity
itsel; and we have seen that when this can be done the
problem of drawing a tangent to a curve and that of finding
the velocity of a moving point are also solved. -«
§8. Of the Relationship of Quantities, or Functiohd,

But we not only have rules for caleulating the value of a
quantity at any time, but also rules for caltulating the
value of one quantity in terms of another guite independ-
ently of the time. Of the former class of rales an example is
the one mentioned above for calculating.the rise of the tide.
We may either write down a fornfiil‘shisHitill pnablm us to
calculate it at a given instant, or we'tnay draw a curve which
shall represent ifs rise at differént times of the da,y.'()f the
second kind of rule a goodvexample is that in which the
pressure of a given quantity of gas is given in terms of its
volume when the temperature is supposed to be constant;
the algebraical statement of the rule giving the relation be-
tween them is thaf'the two things vary inversel;_r 43 one an-
other, or that @he product representing them is constant.
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Thus if we compress a mass of air to one-half of its natural
volume the pressure will become twice as great, or will bf’{:
as it is called, two “‘atmospheres.” And so 1f‘we compresg i
to one-fifth of the volume the pressure will become five
times as great, or five atmospheres (Fig. 118).
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If we like to represent this by a figure (sec Fig. 119) we
shall draw a curve in which the abscissa, or horizontal dis-
tance from the starting point, will represent the volume, and a
vertical line drawn through the extremity of this abscissa will
represent the pressure. For any particular temperature the
curve traced out by the extremity of the line representing the
pressure will be a hyperbola having one asymptote vertical
and the other horizontal; and for different temperatures we
shall have different hyperbolas with the same asymptotes.
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Thus every point “in the plane will represent a particular
state of the bﬁ{dy, since some hyperbola can be drawn through
it; the hogiméntal distance of the point from the origin will
represﬁn‘b\\ﬁhe volume, and its vertical distance the pressure,
while the particular hyperbola on which it lies will indicate
theltémperature. We have here an example of the physical
immportance of a family of curves, to which reference was
made in the preceding chapter (see pp. 148, 149).

When the connection between two quantities has to be
found out by actual observation, this is done by properly
plotting down points on paper (as in §11, Chap. IV) to
represent successive observations. Thus in the case of air
the pressure would be observed for different values of the
volume. For each of these observed pairs of values a point
would be marked in the plane; and when a sufficient number
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had been marked it would become obvious to the eye that,
roughly speaking, the point lay on a hyperbolic eurve. But
it is to be noticed that it is only roughly that this result
holds, because observations are never so accurate that the
eurve does not require to be drawn pretty freely in passing
through the points. But directly the geometer has seen that
the shape of the curve is hyperbolic he recognizes the law
that pressure varies inversely as volume. KA.

*We have here the relation between two quantifies ex-

pressed by means of a curve. Whenever two quantities are
related in some such way, so that one of thembeing given
the other can be ealculated or found, each s said to be a
Junction of the other. Now a function may be supposed to
be given either by an aigebraicamy,!&ﬁ%am  curve. :%hu.s to
find the pressure corresponding te4, given volute we might
say that a certain number was to\be divided by the number
representing the volume, and:the result would be the num-
ber of units of pressure; or #e might say that from the given
point of the horizontal line which represented the volume a
perpendicular was tobe drawn and continued till it met the
curve, and that ¢lie-ordinate (or the part of this between
the horizontal line*and the curve) represented the pressure.
We have thugé"éonnection established between the science
of geometr and the science of quantity, as, for example,
the relatiof between the two quantities, volume and pres-
sure, i’ﬁiipressed by means of a cerfain curve.

Now every connection between two scienceg is a help to
hbth of them. When such a connection is established we may
both use the known theorems about quantities in order to
investigate the nature of curves (and this is, in fact, the
method of co-ordinates introduced by Des_cartes), or we
may make use of known geometrical properties of curves I
order to find out theorems about the way in which quantities
depend upon one another. For the first purpose the 1"3131_31011
between the two quantities is regarded as an equation.
Thus, instead of saying that a pressure vanes inversely as a
volume we should prefer to say that the product of the pres-
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sure and the volume is equal to a certain constant, the tem-
perature being supposed unaltered; or, paying attention
only to the geometrical way of expressing this, we should
say that, for points along the curve we are considering, the
product of the abscissa and the ordinate is equal to a cer-
tain fixed quantity. This is written for shortness )

— pd
Y = ¢

and from such an equation all the properties of a hypefbola
may be deduced. A
But we may also make use of the properties of knofwfi curves

in order to study the ways in which quantities carrdepend on

one another. Thus the perpendicular distaneé’® M from the
www.dbraulibrary.org.i
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&
point P of the ci;jc}e\to a fixed diameter A 0 ¢ (Fig. 120) is a
quantity whose@hatio to the radius o » depends in a certain
definite waympon the magnitude of the angle P 0 A, or, what
is the smﬁe\"ﬁhing {p. 131), upon the length of the arc a ».
The J;afo'ib is in fact what we have termed the sine of the
angle; \or, as it 13 sometimes called, the sine of the arc. If the
ré X P is made proportional to the time, or, what is the same
thing, if p 1s made to move uniformly round the circle, then
the length of the line p ™ will represent the distance from
the centre o of a point Q oscillating according to a law which
is defined by this geometrical construetion. This particular
kind of oscillation, which is called simple harmonic motion,
occurs when the air is agitated by sound, or the ether by
light, or when any elastic body is set into a tremor. Rela-~
tions such as that which we have just mentioned between
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arcs of a circle and straight lines drawn according to some
simple constructions in the circle give rise to what are often
termed cireular functions. Thus the trigonometrical ratios
considered in §7 of Chapter IV are functions of this kind.
We have also hyperbolic functions, depending on the hyper-
bola in somewhat the same way in which cireular functions
depend upon the cirele, and elliptic functions, so ealled He-
cause by means of them the length of the are of anellipse
cax be calculated. "

But the most valuable method of studying the properties
of functions is derived from the considerations\of which we
have been treating in this chapter, viz. considerations of the
rete of change of quantities. When tha relation between
twa quantities is known, the relation.between their rates of
change can be found by a knowd'¥ ibalrprocesa; and
we have shown that the problemnof finding this relation ul-
timately comes to the same thing as the problem of drawing
a tangent to the curve whieh expresses the relation between
the two original quantitiéi;l "Thus, in the case we previously
considered of two quamntities whose product is constant or
which vary inversely as one another, it i§ e}ear that one
must increase when the other decreases; it is fou_nd that
the ratio of thiése rates of change is equal to the ratio of the
quantities $hémselves. Thus the rate of change of the volume
of a gas/is™o the rate of change of the pressure (the tem-
Per&t\l{é"being kept constant) as the volume is to the pres-
suredt being always remembered that an increase of the one
iplies a decrease of the other. ‘

"\ The consideration of this ratio of the rates of change is of
great importance in determining one of the fundamental
changeable properties of a body, namely, its elasticity. W,e
define the elasticity of a gas as the change of pressure which
will produce a given contraction; where by the term contrac-
tion is meant the change in the volume divided by the whole
volume before change. Thus if the volume of 2 gas dlms}:‘e‘i
one per cent., it would experience a contraction of tsth. 1.
then, in accordance with our definition, we divide the pres-
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sure necessary to produce this contraction by iy, or, what
is the same thing, multiply it by 100, we shall get what is
called the elasticity. Now in our case the change of pressure
divided by the whole pressure is equal to what we have
called the contraction, that is, to 1dg; and therefore the
change of pressure is equal to t§sth of the whole pressurc.
But we have just proved that the elasticity is 100 times fi ha
change of pressure necessary to produce the contraction we
have been considering, and it is therefore equal to the whole
pressure. Consequently the elasticity of a gas 1s measured
by the pressure of the gas. K7,
¥ A Aieleraion, and the 20 Phogro
We may then consider the rate Gj\ cha.nge of any meas-
urable quantity as another qudntity which we can find;
and we have derived our notiom of it from the velocity of a
moving point. In the simple§t case, when this point is mov-
ing along a straight line,~the rate at which it is going is the
rate of change of its distance from a point fixed in the line.
But in the general ¢ase, when the point is moving not on a
straight line, bqt\aibng any sort of curve, we shall not give a
complete descrip’tion of its state of motion if we only say
how fast it'is gomg, it will be necessary to say in addition
in what, dl\ectzon it is going. Hence we must not only meas-
ure tl%quantlty of a velocity, but also a certain quality of
it, ¥iz. the direction. Now we do as a matter of fact contrive
..\to‘study these two things together, and the method by which
Swe do sois perhaps one of the most powerful instruments by
which the scope of the exact sciences has been extended in
recent times. Defining the velocity of a moving point as the
rate of change of its position, we are met by the question,
What is its position?
This question has been answered in the preceding chap-
‘ter. The position of a moving point is determined when we
know the directed step or vector which connects it with a
fixed point. If then the velocity of the moving point means
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the rate of change of its position, and if this position is de-
termuned by the vector which would carry us from some
fixed point to the moving point, in order to understand
velocity we shall have to get a clear conception of what is
meant by the rafe of change of a vector.

A E N
Fie. 121
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Let us go back for a moment to the simpler case(ofa point
moving along a straight line; its position is (i:etgrinined oy
means of the step A p from the point A fixed’ip the straight
line to the moving point » (Fig. 121). N,m?ihjs step alters
with the motion of the point; so that if the point comes to ¥’
the step is changed from A P10 A “I;’. Ht?;w is this change made
I the step? Clearly by adding to t}fg‘c}r@ﬁﬁ{’%}‘y%'ﬁ- the new
step ¥ ¥/, and we specify the velopity of » by saying at what
rate this addition is made. .25

Now let us resume thegeneral case. We have the ﬁxe'd
point 4 given; and theposition of the moving point 15
determined by means\of the step A P. As P moves abm}t, this
step gets altered, sé?hmt when » cowes to P’ this step is A #';
it is therefore obwious that it is altered not only in magnitude
but also in difestion. Now the change may be madf: l?y ad.d-
ing to the:é?iginal step 4 P the new step P ?’; and Itfls guite
clear t-h@'t.\i“f we go from a to ? and then fro.m r to ¥’ the re-
sult Mactly the same as if we had gone directly from 4 to

P
\m‘ /
A
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P (Fig. 129). The question then is: At what_ rate does this
addition take place, or what step per second is added to the
position? The answer as before is of the nature of a step.or
vector—that is, the change of position of the moving point
has not only magnitude but direction. We shall therefore
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have to say that the rate of change of a step or vector is
always so many feet per second in a certain direction.

To sum up, then, we state that the velocity of a moving
point is the rate of change of the step which specifics the
position; and that in order to describe aceurately this veloe-
ity, we must draw a line of given length in a given direction:
we ohserve also that the rate of change of a directed quand™
tity is itself a directed quantity. This last remark is of the
utmost importance, and we shall now apply it toa consldera-
tion of the velocity itself. W

If a point is moving uniformly in a straight hn&lts Velouty
is always the same in magnitude and the saméin direction;
and consequently a line drawn to representitvwould be un-
altered dupipg &E’%Jﬂﬁﬂ?? I%Lgi if a p01n1<\m0'u es uniformly
round a circle its velocity, althoughfaiways the same in
magnitude, will be constantly changhug in direction, and the
line which specifies this velocity, will thus be dlwayfs of the
same length, but constantly turmng round o as always tc
keep parallel with the dlrgctlon of motion of the moving
point. And so, generally/when a point is moving along any
kind of curve let us suppose that through some other point,
which is kept fixedja line is always drawn which represents
the velocity of the moving point both in magnitude and
dircction. Sineédhe velocity of the moving pomt will in gen-
eral change; »this line will also change both in size and in
directionfand the end of it will trace out some sort of curve.
Thus {h the case of the uniform circular motion, since the
velo(;if'y remains constant, it is clear that the end of the line
Gepresenting the velocity will trace out a circle; in the case
of a body thrown into the air the end of the corresponding
line would be found to describe a vertical straight line. This
curve described by the end of the line which represents
the velocity at any instant may be regarded as a map of
the motion, and was for that reason called by Hamilton the
hodograph. If we know the path of the moving point and
also the hodograph of the motion, we can find the veloeity
of the moving point at any particular position in its path.
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All we have to do is to draw through the centre of reference
of the hodograph a line parallel to the tangent to the path
at the given position; the length of this line will give the rate
of motion, or the velocity of the point as it passes through
that position in its path. Hamilton proved that in the case
of the planetary orbits described about the sun the hodo-
graph is always a circle. In this case it possesses other in-
teresting properties, as, for example, that the amount\of
light and heat received by the planet during a given ifiterval
of time is propartional to the length of the arc of ¢he hodo-
graph between the two points corresponding toithe begin-
ning and end of that interval. &O
But the great use of the hodograph isfo'give us a clear
conception of the rate of change of theWelocity. This rate
of change is called the acceleration: Ddwiitlimust nog he sup-
posed that acceleration always me4ns an increase of velocity,
for in this case, as in many ofhers, mathematicians have
adopted for use one word todeénote a change that may have
many directions; thus & deergase of velocity is called a nega-
tive acceleration., This ‘mode of speaking, ﬂlthﬂ“%h rather
puzzling at first, becamés a help instead of a canfusion when
one is accustomed o' 1t. Now a velocity may be changed in
magnitude without altering its direction— that is to say, it
may be changed by adding it to a velocity parallel to lts_elf.
In this case we say that the acceleration is in the direction
of motietl But & velocity may also be changed in direction
with gl}& ‘being changed in magnitude, and we h?.Ve seen that
then\the hodograph is a circle. The velocity is altered by
. Adding to it a velocity perpendicular to itself, for the tan-
N gent at any point to a circle is at right angles to the radius
drawn to that point, and in this case we may say that _the
acceleration is at right angles to the directlf:m o-f motion.
But in general both the magnitude and the direction of ’.che
velocity will vary, and then we shall see that- the accelera.tx?n
is neither in the direction of motion nor at right angles to it,
bus that it is in some intermediate direction.
X we consider the motion in the hodograph of the end of
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the line representing the velocity, we observe the motion of
a point whose position is defined by the step to it from the
centre of the hodograph, Now this step is just the velocity
of the point P in the original curve, for the line o Q is sup-
posed to be drawn at every instant to represent the velocity

0.

s
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of P in magnitude zug@i direction. Now we saw that the rate
of change of the gtep from some fixed point a to » was the
velocity of p. Heﬁc’é, since the step 0 @ drawn from the fixed
point o to qdefines the position of q, it is obvious that the
rate of chapge of the step o @ is the velocity of q. Since o @
represg-}rﬁ% the velocity of ®, it follows that the velocity of
the gpint q describing the hodograph is the rate of change

fthe velocity of »; that is to say, it is the acceleration of the
mbtion of p. This acceleration being the velocity of q, and a
velocity being as we have seen a vector, it at once follows
that the acceleration is a veetor or directed quantity.

In changing the magnitude and direction of the velocity
of a moving point we may consider that we are pouring in,
as it were, velocity of a certain kind at a certain rate. In the
case of a stone thrown up obliquely and allowed to fall again
the path described is a parabola, and the direction of motion,
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which originally pointed obliquely upwards, turns round and
becomes horizontal, and then gradually points more and
more downwards. But what has really been happening the
whole time is that velocity straight downwards has been
continually added at a uniform rate during every second, so
that the original velocity of the stone is compounded with
a velocity vertically downwards, increasing uniformiy at fhe
rate of thirty-two feet a second. In this case, then,'vggsay
that the acceleration, or rate of change per second\of the
velocity of the stone, is constant and equal to\thirty-two
feet a second vertically downwards. 7.\

If we whirl anything round at the end of a.string we shall
be continually pouring in velocity directéd*towards the end
of the string which is held in the handsand since the velocity
of the body which is being whirledbid igular, fo the
direction of the string, the added” velocity is always per-
pendicular to the existing veletity of the body. And so also
when a planet is travelling round the sun there is a continual
pouring in of velocity tdwards the sun, or, as we say, the
aceeleration is alwaysin the line joining the planet to the
sun. In addition itds'in this case found to vary inversely as

the square of thé.distance from the sun.

. \’::\ §10. On the Laws of Motion

Thege bxamples prepare us to understand that law of mo-
tionWhich is the basis of all exact treatment of physics.
When a body is moving let us consider what it is that depend,?

“ipon the circumstances, meaning by the |cireumstan es
the instantaneous position relative to it of: othe_r boches-as
well as the instantancous state of the body itself irrespective
of its motion. We might at first be ir}ciined to say that the
velocity of the body depends on the c1rcumsta.n.ces, but very
little reflection will show us that in the same mc?r-mwﬁes
& body may be moving with very different veloclltnes,ston:
given height above the earth’s surface, for examp e’t:ll or
may be moving upwards or downwards, or horizontauy,
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at any inclination, and in any of these modes with any
velocity whatever; and there is nothing contrary to nature
in supposing a motion of this sort. Yet we should find that,
no matter in what way the stone may move through a given
position, the rate of change per second of its velocity will
always be the same, viz. it will be thirty-two feet per second
vertically downwards. When we push a chair along the ice, .
in order to describe the circumstances we must state tle
compression of those museles which keep our hands agaifs$
the chair. Now the rate at which the chair moves dgeé\ not
depend simply upon this compression; for a given ameunt of
push may be either starting the chair from rest‘er may be
quickening it when it is going slowly, or maybe keeping it
up at a hlgbfmﬂ@rauhbn ary.org.in

What is it, then, which does depen lhmn the circum-~
stances? In whichever of these ways)or'in whatever other
way this given amount of push is uséd, its result in every
case is obviously to change the raté of motion of the chair;
and this change of the rate éf motion will vary with the
amount of push. Hence it ig the rate of change of the velocity,
or the aceeleration of the(cha.ir which depends upon the cir-
cumstances, and these\eircumstances are partly the com-
pressmn of our mus%’es and partly the friction of the ice;
the one is mcreas\ng and the other is diminishing the velocity
in the directigh.in which the chair is going.

The la of motion to which allusion has just been made
is this: _’ghe acceleration of a body, or the rate of change of
its velomty depends at any moment upon the position rela-
tw& tb it of the surroundmg bodles, but not upon the rate
atvwhich the body itself is going. There are two different
ways in which this dependence takes place. In some cases,
as when a hand is pushing a chair, the rate of change of the
velocity depends on the state of compression of the bodies
In contact; in other cases, as in the motion of the-planets
about the sun, the acceleration depends on the relative
position of bodies at a distance.

The acceleration produced in a body by a particular set
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of sarrounding circumstances must in each case be deter-
mined by experiment, but we have learnt by experience a
general law which much simplifies the experiments which it
is necessary to make. This law is as follows:—If the preseunce
of one body alone produces a certain acceleration in the
motion of a given body, and the presence of a second body
alone another acceleration; then, if both bodies are present
at the same time, the one has in general no effect upon the
acceleration produced by the other. That is, the-fetal ac-
celeration of the moving body will be the combination of the
two simple accelerations; or, since accelerationd.are directed
quantities, we have only to combine thesimple accelera-
tionz, as we did vector steps in §3 of the'preceding ehapter,
in order to find the result of superposing two sets of sur-
rounding cireumstances. wrndbraulibrary or &.in

Now while this great law of hature simplifies extremely
our consideration of the motiep-of the same body under dif-
ferent surrounding circumstences, it does not enable us to
state anything as to thexsotion of different bodies under t}:.te
same surrounding cifeumstances. This case, howe\.rer, is
amply provided fof by another comprehensive law which ex-
perience also has taught us. We may thus state this third
all-important, {3w of motion:—The ratio of the accelerations
which any 6 bodies produce in each other by their mutual
influencéi§ a constant quantity, quite independent Of. the
exac,t\i}iiirsical characteristics of that influence. That is to
say; however the two bodies influence one anotgxer, Whether
they touch or are connected by a thread or'bemg. at a dis-
tance still alter one another’s velocities, this ratio will re-

main in these and all other cases the same.

§11. Of Mass and Force

Tet us see how we can apply this law. Suppose we take
some standard body p and any other q, and note the ratios
of the accelerations they produce in each other qn(iiier any
of the simplest possible circumstances of mutual influence.
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Let the ratio determined by experiment be represented by
mt, or m expresses the ratio of the acceleration of the stand-
ard body P to that of the second body @. This quantity m
is termed the mass of the body q. Let m’ be the ratio of the
accelerations produced in the standard body P and a third
body r by their mutual influence. Now the law as it stands
above enables us to treat only of the ratio of the accelera={
tions of P and q, or again of P and & under varied circyt-
stances of mutual influence. It does not tell us anythmg
about, the ratio of the accelerations which q and.& inight
produce in each other. Experience, however, again helps
us out of our difficulties and tells us that if @ andg mutually
influence each other, the ratio of the acceleration of ¢ to
that of & mu\bgmgq@yaglgm ratio of m.b0 m’. If then we
choose to term unity the mass of our stahdard body, we may
state generally that mutual accelergtwﬂs are thversely as
masses. Hence, when we have Qngi’e determined the masses
of bodies we are able to applyteur knowledge of the effect
of any set of circumstancesion one body, to calculate the
effect which the same c\rcumstances would produce upon
any other body.!

The reader will réxhaark that mass as defined above is a
ratio of acceleratlons or in other words a mere numerical
constant experhhentally deducible for any two bodies. It is
found that. f(ﬁ‘ two bodies of the same uniform substance,
their ma,s\ges are proportional to their volumes. This relation
of magg, to volume has given rise to much obseurity. An in-
d;ascﬂbable something termed malter has been associated
with bodies. Bodies are supposed to consist of matter filling

! Without considering the body &, the same conclusion may be arrived
at thus:

1. The acceleration of P (due to Q) is proportional to the mass of Q.
2. The acceleration of Q (due to P) is proporticnal to the mass of 2.

-~ dividing 1 by 2
Acc P (due to Q) _
¢ Koo, q (duetop) mp

or in other words the mutual aceelerations are inversely as the masses.—J.R.N.
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space, and the mass of a body is defined as the amount of
matéer in it. An additional conception termed force has been
introduced and is supposed to be in some way resident in
matter., The force of a body P on 4 body g of mass m is a
quantity proportional to the mass m of q and to the accelera~
tion which the presence of  produces in the motion of q.
It wiil be obvious to the reader that this conception of force
no more explains why the presence of p tends to ehange.the
velocity of @, than the conception of matter explaing\why
muingal aceelerations are inversely as masses. The-pustom
of basing our ideas of motion on these terross ,mgt‘f.er” and
“forre” has too often led to obseurity, not enly in mathe-
matical, but in philosophical reasoning. We do not know
why the presence of one body tends tohange the velocity
of another; to say that it arises‘«f&fqmgi»&ﬁﬁ]fﬂf@ﬁf&@%ﬁnt in
the first body acting upon the matbér of the moving body is
only to slur over our ignorance. @ll'that we do know is that
the presence of one body may\tend to change the velocity
of another, and that, if it does, the change can be ascertained
from experiment, and ob8ys the above laws.

To calculate by méans of the laws of motion fro.m the
observed effects on(3 simple body of a simple set of eircum-
stances the maré-complex effects of any combinatipn 9f cir-
cumstances Q_'ﬂ:a Comp]'_ex body or system of hodies IS tkfe
special fundtion of that branch of the exact sciences which is

termed Applied Mathematics.
Nl
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